Jayakody Lahiru N, Ferdouse Jannatul, Hayashi Nobuyuki, Kitagaki Hiroshi
a Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign , Urbana , IL , USA.
b Department of Biochemistry and Applied Biosciences United Graduate School of Agricultural Sciences , Kagoshima University , Kagoshima , Japan , and.
Crit Rev Biotechnol. 2017 Mar;37(2):177-189. doi: 10.3109/07388551.2015.1128877. Epub 2016 Mar 8.
Although there have been approximately 60 chemical compounds identified as potent fermentation inhibitors in lignocellulose hydrolysate, our research group recently discovered glycolaldehyde as a key fermentation inhibitor during second generation biofuel production. Accordingly, we have developed a yeast S. cerevisiae strain exhibiting tolerance to glycolaldehyde. During this glycolaldehyde study, we established novel approaches for rational engineering of inhibitor-tolerant S. cerevisiae strains, including engineering redox cofactors and engineering the SUMOylation pathway. These new technical dimensions provide a novel platform for engineering S. cerevisiae strains to overcome one of the key barriers for industrialization of lignocellulosic ethanol production. As such, this review discusses novel biochemical insight of glycolaldehyde in the context of the biofuel industry.
尽管在木质纤维素水解物中已鉴定出约60种化合物为强效发酵抑制剂,但我们的研究小组最近发现乙醇醛是第二代生物燃料生产过程中的关键发酵抑制剂。因此,我们开发了一种对乙醇醛具有耐受性的酿酒酵母菌株。在这项关于乙醇醛的研究中,我们建立了合理改造耐抑制剂酿酒酵母菌株的新方法,包括改造氧化还原辅因子和改造SUMO化途径。这些新的技术层面为改造酿酒酵母菌株提供了一个新平台,以克服木质纤维素乙醇生产工业化的关键障碍之一。因此,本综述在生物燃料行业的背景下讨论了乙醇醛的新生物化学见解。