Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
Appl Microbiol Biotechnol. 2018 Sep;102(18):8121-8133. doi: 10.1007/s00253-018-9216-x. Epub 2018 Jul 19.
Engineered S. cerevisiae employing the xylose reductase pathway enables efficient xylose valorization to fuels and chemicals. However, toxicity of thermochemically pretreated biomass hydrolysate on S. cerevisiae is one of the key technical challenges to upgrade biomass-derived sugars including xylose and glucose into high-value products. We investigated the effect of glycolaldehyde, one of the biomass-derived highly toxic aldehyde compounds, and its combinatorial inhibitory effect with other major fermentation inhibitors commonly found in plant hydrolysate such as methylglyoxal, 5-HMF, furfural, vanillin, and acetic acid on engineered xylose-fermenting S. cerevisiae in xylose and/or glucose media. We elucidated that glycolaldehyde and methylglyoxal are the key inhibitory short-aliphatic aldehydes on engineered xylose-fermenting S. cerevisiae in xylose-containing medium. Indeed, the degree of toxicity of these tested fermentation inhibitors varies with the sole carbon source of the medium. We demonstrate that genome integration of an extra copy of autologous GRE2 with its native promotor substantially improved the toxic tolerance of engineered xylose-fermenting S. cerevisiae to major inhibitory compounds including glycolaldehyde in the xylose-containing medium, and xylose-rich, lignocellulosic hydrolysate derived from Miscanthus giganteus, and concurrently improved the ethanol fermentation profile. Outcomes of this study will aid the development of next-generation robust S. cerevisiae strains for efficient fermentation of hexose and pentose sugars found in biomass hydrolysate.
利用木糖还原酶途径工程化酿酒酵母能够有效地将木糖转化为燃料和化学品。然而,热化学预处理生物质水解液对酿酒酵母的毒性是将生物质衍生糖(包括木糖和葡萄糖)升级为高价值产品的关键技术挑战之一。我们研究了一种生物质衍生的高毒性醛类化合物——乙二醛,以及它与其他常见于植物水解液中的主要发酵抑制剂(如甲基乙二醛、5-HMF、糠醛、香草醛和乙酸)的组合抑制作用对工程化木糖发酵酿酒酵母在木糖和/或葡萄糖培养基中的影响。我们阐明了乙二醛和甲基乙二醛是工程化木糖发酵酿酒酵母在含木糖培养基中的关键抑制性短链脂肪醛。事实上,这些测试的发酵抑制剂的毒性程度随培养基中唯一的碳源而变化。我们证明,通过基因组整合一个额外的同源 GRE2 拷贝及其天然启动子,可以显著提高工程化木糖发酵酿酒酵母对主要抑制性化合物(包括含木糖培养基中的乙二醛)的毒性耐受能力,同时还可以改善乙醇发酵特性。这项研究的结果将有助于开发下一代用于高效发酵生物质水解液中六碳糖和五碳糖的酿酒酵母菌株。