González Javier, Vujačić Ivan, Wit Ernst
Mathematics, Statistics and Probability Unit, University of Groningen, Groningen, Groningen 9747 AG, The Netherlands.
Stat Appl Genet Mol Biol. 2013 Mar 26;12(1):109-27. doi: 10.1515/sagmb-2012-0006.
Regulatory networks consist of genes encoding transcription factors (TFs) and the genes they activate or repress. Various types of systems of ordinary differential equations (ODE) have been proposed to model these networks, ranging from linear to Michaelis-Menten approaches. In practice, a serious drawback to estimate these models is that the TFs are generally unobserved. The reason is the actual lack of high-throughput techniques to measure abundance of proteins in the cell. The challenge is to infer their activity profile together with the kinetic parameters of the ODE using level expression measurements of the genes they regulate. In this work we propose general statistical framework to infer the kinetic parameters of regulatory networks with one or more TFs using time course gene expression data. Our approach is also able to predict the activity levels of the TF. We use a penalized likelihood approach where the ODE is used as a penalty. The main advantage is that the solution of the ODE is not required explicitly as it is common in most proposed methods. This makes our approach computationally efficient and suitable for large systems with many components. We use the proposed method to study a SOS repair system in Escherichia coli. The reconstructed TF exhibits a similar behavior to experimentally measured profiles and the genetic expression data are fitted properly.
调控网络由编码转录因子(TFs)的基因以及它们激活或抑制的基因组成。已经提出了各种类型的常微分方程(ODE)系统来对这些网络进行建模,范围从线性方法到米氏方程方法。在实际中,估计这些模型的一个严重缺点是转录因子通常是不可观测的。原因是实际缺乏测量细胞中蛋白质丰度的高通量技术。挑战在于利用它们所调控基因的水平表达测量值来推断它们的活性谱以及ODE的动力学参数。在这项工作中,我们提出了一个通用的统计框架,用于使用时间序列基因表达数据推断具有一个或多个转录因子的调控网络的动力学参数。我们的方法还能够预测转录因子的活性水平。我们使用一种惩罚似然方法,其中ODE被用作惩罚项。主要优点是不像大多数已提出的方法那样需要显式求解ODE。这使得我们的方法计算效率高,适用于具有许多组件的大型系统。我们使用所提出的方法来研究大肠杆菌中的SOS修复系统。重建的转录因子表现出与实验测量谱相似的行为,并且基因表达数据得到了恰当的拟合。