Niu Mu, Macdonald Benn, Rogers Simon, Filippone Maurizio, Husmeier Dirk
1School of Mathematics and Statistics, University of Glasgow, Glasgow, UK.
2Department of Computer Science, University of Glasgow, Glasgow, UK.
Comput Stat. 2018;33(2):1091-1123. doi: 10.1007/s00180-017-0753-z. Epub 2017 Aug 9.
Inference in mechanistic models of non-linear differential equations is a challenging problem in current computational statistics. Due to the high computational costs of numerically solving the differential equations in every step of an iterative parameter adaptation scheme, approximate methods based on gradient matching have become popular. However, these methods critically depend on the smoothing scheme for function interpolation. The present article adapts an idea from manifold learning and demonstrates that a time warping approach aiming to homogenize intrinsic length scales can lead to a significant improvement in parameter estimation accuracy. We demonstrate the effectiveness of this scheme on noisy data from two dynamical systems with periodic limit cycle, a biopathway, and an application from soft-tissue mechanics. Our study also provides a comparative evaluation on a wide range of signal-to-noise ratios.
非线性微分方程机理模型的推断是当前计算统计学中一个具有挑战性的问题。由于在迭代参数自适应方案的每一步中数值求解微分方程的计算成本很高,基于梯度匹配的近似方法变得很流行。然而,这些方法严重依赖于函数插值的平滑方案。本文采用了流形学习中的一个想法,并证明了一种旨在使固有长度尺度均匀化的时间规整方法可以显著提高参数估计精度。我们在具有周期性极限环的两个动力系统、一个生物途径的噪声数据以及软组织力学的一个应用中证明了该方案的有效性。我们的研究还对广泛的信噪比进行了比较评估。