Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA.
J Neural Eng. 2013 Aug;10(4):046004. doi: 10.1088/1741-2560/10/4/046004. Epub 2013 Jun 7.
There is growing interest in using closed-loop anesthetic delivery (CLAD) systems to automate control of brain states (sedation, unconsciousness and antinociception) in patients receiving anesthesia care. The accuracy and reliability of these systems can be improved by using as control signals electroencephalogram (EEG) markers for which the neurophysiological links to the anesthetic-induced brain states are well established. Burst suppression, in which bursts of electrical activity alternate with periods of quiescence or suppression, is a well-known, readily discernible EEG marker of profound brain inactivation and unconsciousness. This pattern is commonly maintained when anesthetics are administered to produce a medically-induced coma for cerebral protection in patients suffering from brain injuries or to arrest brain activity in patients having uncontrollable seizures. Although the coma may be required for several hours or days, drug infusion rates are managed inefficiently by manual adjustment. Our objective is to design a CLAD system for burst suppression control to automate management of medically-induced coma.
We establish a CLAD system to control burst suppression consisting of: a two-dimensional linear system model relating the anesthetic brain level to the EEG dynamics; a new control signal, the burst suppression probability (BSP) defining the instantaneous probability of suppression; the BSP filter, a state-space algorithm to estimate the BSP from EEG recordings; a proportional-integral controller; and a system identification procedure to estimate the model and controller parameters.
We demonstrate reliable performance of our system in simulation studies of burst suppression control using both propofol and etomidate in rodent experiments based on Vijn and Sneyd, and in human experiments based on the Schnider pharmacokinetic model for propofol. Using propofol, we further demonstrate that our control system reliably tracks changing target levels of burst suppression in simulated human subjects across different epidemiological profiles.
Our results give new insights into CLAD system design and suggest a control-theory framework to automate second-to-second control of burst suppression for management of medically-induced coma.
使用闭环麻醉输送 (CLAD) 系统来自动控制接受麻醉护理的患者的脑状态(镇静、无意识和镇痛),这一做法引起了越来越多的关注。通过使用脑电图 (EEG) 标记作为控制信号,可以提高这些系统的准确性和可靠性,这些 EEG 标记与麻醉诱导的脑状态之间的神经生理联系已经得到很好的建立。爆发抑制是一种众所周知的、易于识别的脑电图标记,它表示大脑深度失活和无意识,其中电活动爆发与静止或抑制期交替出现。当给予麻醉剂以产生用于脑保护的药物诱导昏迷或阻止患有无法控制的癫痫发作的患者的脑活动时,通常会维持这种模式。尽管昏迷可能需要几个小时或几天,但药物输注率通过手动调整来低效管理。我们的目标是设计用于爆发抑制控制的 CLAD 系统,以实现对药物诱导昏迷的自动管理。
我们建立了一个用于控制爆发抑制的 CLAD 系统,该系统包括:一个二维线性系统模型,将麻醉大脑水平与 EEG 动力学相关联;一个新的控制信号,爆发抑制概率 (BSP),定义抑制的瞬时概率;BSP 滤波器,一种基于状态空间算法从 EEG 记录估计 BSP 的算法;比例积分控制器;以及一个用于估计模型和控制器参数的系统识别过程。
我们在基于 Vijn 和 Sneyd 的啮齿动物实验以及基于 Schnider 丙泊酚药代动力学模型的人类实验中,展示了我们的系统在爆发抑制控制的仿真研究中的可靠性能。使用丙泊酚,我们进一步证明了我们的控制系统可以可靠地跟踪模拟人类受试者中不同流行特征下爆发抑制的目标水平变化。
我们的结果为 CLAD 系统设计提供了新的见解,并提出了控制理论框架,以实现对爆发抑制的秒级控制,从而实现对药物诱导昏迷的管理。