Suppr超能文献

开发一种用于啮齿动物模型的医学诱导昏迷的个性化闭环控制器。

Developing a personalized closed-loop controller of medically-induced coma in a rodent model.

机构信息

Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, United States of America.

出版信息

J Neural Eng. 2019 Jun;16(3):036022. doi: 10.1088/1741-2552/ab0ea4. Epub 2019 Mar 11.

Abstract

OBJECTIVE

Personalized automatic control of medically-induced coma, a critical multi-day therapy in the intensive care unit, could greatly benefit clinical care and further provide a novel scientific tool for investigating how the brain response to anesthetic infusion rate changes during therapy. Personalized control would require real-time tracking of inter- and intra-subject variabilities in the brain response to anesthetic infusion rate while simultaneously delivering the therapy, which has not been achieved. Current control systems for medically-induced coma require a separate offline model fitting experiment to deal with inter-subject variabilities, which would lead to therapy interruption. Removing the need for these offline interruptions could help facilitate clinical feasbility. In addition, current systems do not track intra-subject variabilities. Tracking intra-subject variabilities is essential for studying whether or how the brain response to anesthetic infusion rate changes during therapy. Further, such tracking could enhance control precison and thus help facilitate clinical feasibility.

APPROACH

Here we develop a personalized closed-loop anesthetic delivery (CLAD) system in a rodent model that tracks both inter- and intra-subject variabilities in real time while simultaneously controlling the anesthetic in closed loop. We tested the CLAD in rats by administrating propofol to control the electroencephalogram (EEG) burst suppression. We first examined whether the CLAD can remove the need for offline model fitting interruption. We then used the CLAD as a tool to study whether and how the brain response to anesthetic infusion rate changes as a function of changes in the depth of medically-induced coma. Finally, we studied whether the CLAD can enhance control compared with prior systems by tracking intra-subject variabilities.

MAIN RESULTS

The CLAD precisely controlled the EEG burst suppression in each rat without performing offline model fitting experiments. Further, using the CLAD, we discovered that the brain response to anesthetic infusion rate varied during control, and that these variations correlated with the depth of medically-induced coma in a consistent manner across individual rats. Finally, tracking these variations reduced control bias and error by more than 70% compared with prior systems.

SIGNIFICANCE

This personalized CLAD provides a new tool to study the dynamics of brain response to anesthetic infusion rate and has significant implications for enabling clinically-feasible automatic control of medically-induced coma.

摘要

目的

在重症监护病房中,对医学诱导昏迷进行个性化的自动控制是一种关键的多天治疗方法,这将极大地有益于临床护理,并进一步为研究大脑对麻醉输注率的反应在治疗过程中如何变化提供一种新的科学工具。个性化控制需要实时跟踪大脑对麻醉输注率的反应中的个体间和个体内变异性,同时提供治疗,而这尚未实现。目前的医学诱导昏迷的控制系统需要一个单独的离线模型拟合实验来处理个体间变异性,这将导致治疗中断。消除对这些离线中断的需求可能有助于促进临床可行性。此外,目前的系统不跟踪个体内变异性。跟踪个体内变异性对于研究大脑对麻醉输注率的反应在治疗过程中是否以及如何变化至关重要。此外,这种跟踪可以提高控制精度,从而有助于促进临床可行性。

方法

在这里,我们在啮齿动物模型中开发了一种个性化的闭环麻醉输送(CLAD)系统,该系统可以实时跟踪个体间和个体内的变异性,同时进行闭环控制。我们通过给予异丙酚来控制脑电图(EEG)爆发抑制来在大鼠中测试 CLAD。我们首先检查 CLAD 是否可以消除对离线模型拟合中断的需求。然后,我们将 CLAD 用作一种工具,研究大脑对麻醉输注率的反应如何随医学诱导昏迷深度的变化而变化。最后,我们通过跟踪个体内变异性来研究 CLAD 是否可以比以前的系统更好地增强控制。

主要结果

CLAD 精确地控制了每只大鼠的 EEG 爆发抑制,而无需进行离线模型拟合实验。此外,使用 CLAD,我们发现大脑对麻醉输注率的反应在控制过程中发生了变化,并且这些变化以一种与个体大鼠一致的方式与医学诱导昏迷的深度相关。最后,与以前的系统相比,跟踪这些变化将控制偏差和误差降低了 70%以上。

意义

这种个性化的 CLAD 为研究大脑对麻醉输注率的反应动力学提供了一种新工具,并对实现医学诱导昏迷的自动控制具有重要意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验