Chemali Jessica J, Wong K F Kevin, Solt Ken, Brown Emery N
Massachussets General Hospital.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:1431-4. doi: 10.1109/IEMBS.2011.6090354.
Burst suppression is an electroencephalogram pattern observed in states of severely reduced brain activity, such as general anesthesia, hypothermia and anoxic brain injuries. The burst suppression ratio (BSR), defined as the fraction of EEG spent in suppression per epoch, is the standard quantitative measure used to characterize burst suppression. We present a state space model to compute a dynamic estimate of the BSR as the instantaneous probability of suppression. We estimate the model using an approximate EM algorithm and illustrate its application in the analysis of rodent burst suppression recordings under general anesthesia. Our approach removes the need to artificially average the ratio over long epochs and allows us to make formal statistical comparisons of burst activity at different time points. Our state-space model suggests a more principled way to analyze this key EEG feature that may offer more informative assessments of its associated brain state.
爆发抑制是在大脑活动严重降低的状态下观察到的一种脑电图模式,如全身麻醉、体温过低和缺氧性脑损伤。爆发抑制率(BSR)定义为每个时间段内脑电图处于抑制状态的时间占比,是用于表征爆发抑制的标准定量指标。我们提出了一个状态空间模型,用于计算作为抑制瞬时概率的爆发抑制率的动态估计值。我们使用近似期望最大化(EM)算法估计该模型,并说明其在分析全身麻醉下啮齿动物爆发抑制记录中的应用。我们的方法无需对长时间段的比率进行人工平均,并且使我们能够对不同时间点的爆发活动进行正式的统计比较。我们的状态空间模型提出了一种更有原则的方法来分析这一关键脑电图特征,这可能会对其相关脑状态提供更具信息量的评估。