Department of Chemistry, Brown University , Providence, Rhode Island 02912, United States.
Acc Chem Res. 2013 Nov 19;46(11):2485-97. doi: 10.1021/ar300353n. Epub 2013 Jun 7.
Quinonoid metal complexes have potential applications in surface chemistry, coordination polymers, and catalysts. Although quinonoid manganese tricarbonyl complexes have been used as secondary building units (SBUs) in the formation of novel metal-organometallic coordination networks and polymers, the potentially wider applications of these versatile linkers have not yet been recognized. In this Account, we focus on these diverse new applications of quinonoid metal complexes, and report on the variety of quinonoid metal complexes that we have synthesized. Through the use of (η(6)-hydroquinone)Mn(CO)3, we are able to modify the surface of Fe3O4 and FePt nanoparticles (NPs). This process occurs either by the replacement of oleylamine with neutral [(η(5)-semiquinone)Mn(CO)3] at the NP surface, or by the binding of anionic (η(4)-quinone)Mn(CO)3 upon further deprotonation of [(η(5)-semiquinone)Mn(CO)3] at the NP surface. We have demonstrated chemistry at the intersection of surface-modified NPs and coordination polymers through the growth of organometallic coordination polymers onto the surface modified Fe3O4 NPs. The resulting magnetic NP/organometallic coordination polymer hybrid material exhibited both the unique superparamagnetic behavior associated with Fe3O4 NPs and the paramagnetism attributable to the metal nodes, depending upon the magnetic range examined. By the use of functionalized [(η(5)-semiquinone)Mn(CO)3] complexes, we attained the formation of an organometallic monolayer on the surface of highly ordered pyrolitic graphite (HOPG). The resulting organometallic monolayer was not simply a random array of manganese atoms on the surface, but rather consisted of an alternating "up and down" spatial arrangement of Mn atoms extending from the HOPG surface due to hydrogen bonding of the quinonoid complexes. We also showed that the topology of metal atoms on the surface could be controlled through the use of quinonoid metal complexes. A quinonoid rhodium complex showed catalytic activity in Suzuki-Miyaura type reaction. As a result of the excellent stability of the homogeneous catalyst (quinone)Rh(COD) in water, we also successfully demonstrated catalyst recycling in 1,2- and 1,4-addition reactions. The compound (quinone)Ir(COD) showed significantly poorer catalytic activity in 1,4-addition reactions. Following upon the excellent coordination ability of the quinonoid rhodium complexes to metal centers, we synthesized organometallic coordination polymer nanocatalysts and silica gel-supported quinonoid rhodium catalysts, the latter using a surface sol-gel technique. The resulting heterogeneous catalysts showed activity in the stereospecific polymerization of phenylacetylene.
醌型金属配合物在表面化学、配位聚合物和催化剂中有潜在的应用。尽管醌型锰三羰基配合物已被用作新型金属有机配位网络和聚合物形成的次级建筑单元(SBUs),但这些多功能连接物的潜在更广泛应用尚未得到认可。在本报告中,我们专注于醌型金属配合物的这些多样化的新应用,并报告了我们合成的各种醌型金属配合物。通过使用 (η(6)-对苯二酚)Mn(CO)3,我们能够修饰 Fe3O4 和 FePt 纳米粒子(NPs)的表面。这个过程要么通过在 NP 表面上用中性 [(η(5)-半醌)Mn(CO)3]取代油胺,要么通过在 NP 表面上进一步去质子化 [(η(5)-半醌)Mn(CO)3]来结合阴离子 (η(4)-醌)Mn(CO)3来实现。我们通过将有机金属配位聚合物生长到表面修饰的 Fe3O4 NPs 上,展示了表面修饰的 NPs 和配位聚合物交叉点的化学。所得的磁性 NP/有机金属配位聚合物杂化材料表现出与 Fe3O4 NPs 相关的独特超顺磁性行为以及归因于金属节点的顺磁性,具体取决于所检查的磁范围。通过使用功能化的 [(η(5)-半醌)Mn(CO)3] 配合物,我们在高度有序的热解石墨(HOPG)表面上形成了有机金属单层。所得的有机金属单层不仅仅是表面上锰原子的随机排列,而是由于醌型配合物的氢键,由 Mn 原子的交替“上下”空间排列组成,从 HOPG 表面延伸出来。我们还表明,表面上金属原子的拓扑结构可以通过使用醌型金属配合物来控制。一个醌型铑配合物在铃木-宫浦型反应中表现出催化活性。由于均相催化剂 (醌)Rh(COD) 在水中的优异稳定性,我们还成功地在 1,2-和 1,4-加成反应中实现了催化剂回收。化合物 (醌)Ir(COD) 在 1,4-加成反应中的催化活性明显较差。在醌型铑配合物与金属中心优异的配位能力之后,我们合成了有机金属配位聚合物纳米催化剂和硅胶负载的醌型铑催化剂,后者使用表面溶胶-凝胶技术。所得的多相催化剂在苯乙炔的立体特异性聚合中表现出活性。