a Department of Bioengineering , Rice University , P.O. Box 1892, MS 142 , Houston , TX , 77251-1892 , USA.
J Biomater Sci Polym Ed. 2013;24(15):1794-813. doi: 10.1080/09205063.2013.803455. Epub 2013 Jun 8.
Recent insight into the critical role of pro-inflammatory cytokines, particularly tumor necrosis factor-α (TNF-α), in bone regeneration has heralded a new direction in the design of tissue engineering constructs. Previous studies have demonstrated that continuous delivery of 50 ng/ml TNF-α to mesenchymal stem cells (MSCs) cultured on three-dimensional (3D) biodegradable electrospun poly(ϵ-caprolactone) (PCL) microfiber meshes stimulates mineralized matrix deposition, a marker of osteogenic differentiation. Since TNF-α exhibits a biphasic pattern of expression following bone fracture in vivo, this study aimed to investigate the effects of temporal patterns of TNF-α delivery on in vitro osteogenic differentiation of MSCs cultured on 3D electrospun PCL scaffolds. MSCs were cultured for 16 days and exposed to continuous, early, intermediate, or late TNF-α delivery. To further elucidate the effects of TNF-α on osteogenic differentiation, the study design included MSCs precultured both in the presence and absence of typically required osteogenic supplement dexamethasone. Mineralized matrix deposition was not observed in constructs with dexamethasone-naïve MSCs, suggesting that TNF-α is not sufficient to trigger in vitro osteogenic differentiation of MSCs. For MSCs precultured with dexamethasone, TNF-α suppressed alkaline phosphatase activity, an early marker of osteogenic differentiation, and stimulated mineralized matrix deposition, a late stage marker of MSC osteogenic differentiation. By elucidating the impact of temporal variations in TNF-α delivery on MSC osteogenic differentiation, our results offer insight into the regenerative mechanism of TNF-α and provide the design parameters for a novel tissue engineering strategy that rationally controls TNF-α signaling to stimulate bone regeneration.
最近,人们对促炎细胞因子(尤其是肿瘤坏死因子-α(TNF-α))在骨再生中的关键作用有了深入的了解,这为组织工程构建物的设计开辟了新的方向。先前的研究已经证明,将 50ng/ml 的 TNF-α持续递送至三维(3D)可生物降解的静电纺聚(ε-己内酯)(PCL)微纤维网格上培养的间充质干细胞(MSCs)可刺激矿化基质沉积,这是成骨分化的标志物。由于 TNF-α在体内骨折后表现出双相表达模式,因此本研究旨在研究持续、早期、中期和晚期 TNF-α递送给在 3D 静电纺 PCL 支架上培养的 MSCs 的体外成骨分化的影响。将 MSCs 培养 16 天,并暴露于持续、早期、中期或晚期 TNF-α递送中。为了进一步阐明 TNF-α对成骨分化的影响,研究设计包括用和不用通常需要的成骨补充剂地塞米松预先培养 MSCs。在用地塞米松处理的 MSC 构建体中未观察到矿化基质沉积,这表明 TNF-α不足以触发 MSC 的体外成骨分化。对于用地塞米松预先培养的 MSC,TNF-α抑制碱性磷酸酶活性,这是成骨分化的早期标志物,并刺激矿化基质沉积,这是 MSC 成骨分化的晚期标志物。通过阐明 TNF-α递送的时间变化对 MSC 成骨分化的影响,我们的结果深入了解了 TNF-α的再生机制,并为一种新的组织工程策略提供了设计参数,该策略可以合理地控制 TNF-α信号以刺激骨再生。