Suppr超能文献

用于人骨髓间充质干细胞成骨分化的纳米粘土增强聚(ε-己内酯)电纺支架

Nanoclay-enriched poly(ɛ-caprolactone) electrospun scaffolds for osteogenic differentiation of human mesenchymal stem cells.

作者信息

Gaharwar Akhilesh K, Mukundan Shilpaa, Karaca Elif, Dolatshahi-Pirouz Alireza, Patel Alpesh, Rangarajan Kaushik, Mihaila Silvia M, Iviglia Giorgio, Zhang Hongbin, Khademhosseini Ali

机构信息

1 David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge, Massachusetts.

出版信息

Tissue Eng Part A. 2014 Aug;20(15-16):2088-101. doi: 10.1089/ten.tea.2013.0281. Epub 2014 May 19.

Abstract

Musculoskeletal tissue engineering aims at repairing and regenerating damaged tissues using biological tissue substitutes. One approach to achieve this aim is to develop osteoconductive scaffolds that facilitate the formation of functional bone tissue. We have fabricated nanoclay-enriched electrospun poly(ɛ-caprolactone) (PCL) scaffolds for osteogenic differentiation of human mesenchymal stem cells (hMSCs). A range of electrospun scaffolds is fabricated by varying the nanoclay concentrations within the PCL scaffolds. The addition of nanoclay decreases fiber diameter and increases surface roughness of electrospun fibers. The enrichment of PCL scaffold with nanoclay promotes in vitro biomineralization when subjected to simulated body fluid (SBF), indicating bioactive characteristics of the hybrid scaffolds. The degradation rate of PCL increases due to the addition of nanoclay. In addition, a significant increase in crystallization temperature of PCL is also observed due to enhanced surface interactions between PCL and nanoclay. The effect of nanoclay on the mechanical properties of electrospun fibers is also evaluated. The feasibility of using nanoclay-enriched PCL scaffolds for tissue engineering applications is investigated in vitro using hMSCs. The nanoclay-enriched electrospun PCL scaffolds support hMSCs adhesion and proliferation. The addition of nanoclay significantly enhances osteogenic differentiation of hMSCs on the electrospun scaffolds as evident by an increase in alkaline phosphates activity of hMSCs and higher deposition of mineralized extracellular matrix compared to PCL scaffolds. Given its unique bioactive characteristics, nanoclay-enriched PCL fibrous scaffold may be used for musculoskeletal tissue engineering.

摘要

肌肉骨骼组织工程旨在利用生物组织替代物修复和再生受损组织。实现这一目标的一种方法是开发促进功能性骨组织形成的骨传导支架。我们制备了富含纳米粘土的电纺聚己内酯(PCL)支架,用于人骨髓间充质干细胞(hMSCs)的成骨分化。通过改变PCL支架内的纳米粘土浓度制备了一系列电纺支架。纳米粘土的加入减小了纤维直径并增加了电纺纤维的表面粗糙度。当置于模拟体液(SBF)中时,PCL支架中纳米粘土的富集促进了体外生物矿化,表明了这种复合支架的生物活性特征。由于纳米粘土的加入,PCL的降解速率增加。此外,由于PCL与纳米粘土之间的表面相互作用增强,还观察到PCL的结晶温度显著升高。还评估了纳米粘土对电纺纤维力学性能的影响。使用hMSCs在体外研究了使用富含纳米粘土的PCL支架用于组织工程应用的可行性。富含纳米粘土的电纺PCL支架支持hMSCs的粘附和增殖。与PCL支架相比,纳米粘土的加入显著增强了hMSCs在电纺支架上的成骨分化,这表现为hMSCs碱性磷酸酶活性的增加以及矿化细胞外基质的更高沉积。鉴于其独特的生物活性特征,富含纳米粘土的PCL纤维支架可用于肌肉骨骼组织工程。

相似文献

1
Nanoclay-enriched poly(ɛ-caprolactone) electrospun scaffolds for osteogenic differentiation of human mesenchymal stem cells.
Tissue Eng Part A. 2014 Aug;20(15-16):2088-101. doi: 10.1089/ten.tea.2013.0281. Epub 2014 May 19.
4
Biomineralized hydroxyapatite nanoclay composite scaffolds with polycaprolactone for stem cell-based bone tissue engineering.
J Biomed Mater Res A. 2015 Jun;103(6):2077-101. doi: 10.1002/jbm.a.35342. Epub 2014 Oct 21.
5
Nanofibrous Mineralized Electrospun Scaffold as a Substrate for Bone Tissue Regeneration.
J Biomed Nanotechnol. 2016 Nov;12(11):2076-82. doi: 10.1166/jbn.2016.2306.
6
Co-culture cell-derived extracellular matrix loaded electrospun microfibrous scaffolds for bone tissue engineering.
Mater Sci Eng C Mater Biol Appl. 2019 Jun;99:479-490. doi: 10.1016/j.msec.2019.01.127. Epub 2019 Jan 30.
8
Bioactive nano-fibrous scaffold for vascularized craniofacial bone regeneration.
J Tissue Eng Regen Med. 2018 Mar;12(3):e1537-e1548. doi: 10.1002/term.2579. Epub 2017 Dec 4.
9
Effects of Fiber Alignment and Coculture with Endothelial Cells on Osteogenic Differentiation of Mesenchymal Stromal Cells.
Tissue Eng Part C Methods. 2020 Jan;26(1):11-22. doi: 10.1089/ten.TEC.2019.0232. Epub 2019 Dec 27.
10
Surface plasma treatment of poly(caprolactone) micro, nano, and multiscale fibrous scaffolds for enhanced osteoconductivity.
Tissue Eng Part A. 2014 Jun;20(11-12):1689-702. doi: 10.1089/ten.TEA.2013.0569. Epub 2014 Feb 14.

引用本文的文献

3
Exploring Electrospun Scaffold Innovations in Cardiovascular Therapy: A Review of Electrospinning in Cardiovascular Disease.
Bioengineering (Basel). 2024 Feb 25;11(3):218. doi: 10.3390/bioengineering11030218.
5
Poly (l-lactic acid)-based modified nanofibrous membrane with dual drug release capability for GBR application.
Int J Biol Macromol. 2023 Mar 15;231:123201. doi: 10.1016/j.ijbiomac.2023.123201. Epub 2023 Jan 12.
6
Synthetic materials in craniofacial regenerative medicine: A comprehensive overview.
Front Bioeng Biotechnol. 2022 Nov 9;10:987195. doi: 10.3389/fbioe.2022.987195. eCollection 2022.
7
Inorganic Nanomaterials in Tissue Engineering.
Pharmaceutics. 2022 May 26;14(6):1127. doi: 10.3390/pharmaceutics14061127.
10
Vascularized bone regeneration accelerated by 3D-printed nanosilicate-functionalized polycaprolactone scaffold.
Regen Biomater. 2021 Nov 12;8(6):rbab061. doi: 10.1093/rb/rbab061. eCollection 2021 Dec.

本文引用的文献

1
Photocrosslinked nanocomposite hydrogels from PEG and silica nanospheres: structural, mechanical and cell adhesion characteristics.
Mater Sci Eng C Mater Biol Appl. 2013 Apr 1;33(3):1800-7. doi: 10.1016/j.msec.2012.12.099. Epub 2013 Jan 8.
2
Bioactive silicate nanoplatelets for osteogenic differentiation of human mesenchymal stem cells.
Adv Mater. 2013 Jun 25;25(24):3329-36. doi: 10.1002/adma.201300584. Epub 2013 May 13.
3
Highly elastomeric poly(glycerol sebacate)-co-poly(ethylene glycol) amphiphilic block copolymers.
Biomaterials. 2013 May;34(16):3970-3983. doi: 10.1016/j.biomaterials.2013.01.045. Epub 2013 Mar 1.
4
Nanoclays mediate stem cell differentiation and mineralized ECM formation on biopolymer scaffolds.
J Biomed Mater Res A. 2013 Sep;101(9):2644-60. doi: 10.1002/jbm.a.34561. Epub 2013 Feb 15.
5
Hyperbranched polyester hydrogels with controlled drug release and cell adhesion properties.
Biomacromolecules. 2013 May 13;14(5):1299-310. doi: 10.1021/bm301825q. Epub 2013 Apr 1.
8
In vitro evaluation of electrospun PCL/nanoclay composite scaffold for bone tissue engineering.
J Mater Sci Mater Med. 2012 Jul;23(7):1749-61. doi: 10.1007/s10856-012-4647-x. Epub 2012 May 3.
9
Engineering microscale topographies to control the cell-substrate interface.
Biomaterials. 2012 Jul;33(21):5230-46. doi: 10.1016/j.biomaterials.2012.03.079. Epub 2012 Apr 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验