Suppr超能文献

运动想象脑-机接口中最小二乘分类器中 EEG 特征的高效自动选择和组合。

Efficient automatic selection and combination of EEG features in least squares classifiers for motor imagery brain-computer interfaces.

机构信息

Centro Universitario de la Defensa de San Javier (University Centre of Defence at the Spanish Air Force Academy), MDE-UPCT, Santiago de la Ribera, Murcia, Spain.

出版信息

Int J Neural Syst. 2013 Aug;23(4):1350015. doi: 10.1142/S0129065713500159. Epub 2013 May 26.

Abstract

Discriminative features have to be properly extracted and selected from the electroencephalographic (EEG) signals of each specific subject in order to achieve an adaptive brain-computer interface (BCI) system. This work presents an efficient wrapper-based methodology for feature selection and least squares discrimination of high-dimensional EEG data with low computational complexity. Features are computed in different time segments using three widely used methods for motor imagery tasks and, then, they are concatenated or averaged in order to take into account the time course variability of the EEG signals. Once EEG features have been extracted, proposed framework comprises two stages. The first stage entails feature ranking and, in this work, two different procedures have been considered, the least angle regression (LARS) and the Wilcoxon rank sum test, to compare the performance of each one. The second stage selects the most relevant features using an efficient leave-one-out (LOO) estimation based on the Allen's PRESS statistic. Experimental comparisons with the state-of-the-art BCI methods shows that this approach gives better results than current state-of-the-art approaches in terms of recognition rates and computational requirements and, also with respect to the first ranking stage, it is confirmed that the LARS algorithm provides better results than the Wilcoxon rank sum test for these experiments.

摘要

为了实现自适应脑机接口(BCI)系统,必须从每个特定对象的脑电图(EEG)信号中提取和选择判别特征。这项工作提出了一种基于有效包装器的方法,用于选择特征和对具有低计算复杂度的高维 EEG 数据进行最小二乘判别。使用三种广泛用于运动想象任务的方法在不同的时间片段中计算特征,然后将它们串联或平均,以考虑 EEG 信号的时间变化。一旦提取了 EEG 特征,所提出的框架包括两个阶段。第一阶段涉及特征排序,在这项工作中,考虑了两种不同的过程,最小角回归(LARS)和 Wilcoxon 秩和检验,以比较每种方法的性能。第二阶段使用基于 Allen 的 PRESS 统计量的高效留一法(LOO)估计来选择最相关的特征。与最先进的 BCI 方法的实验比较表明,与现有最先进的方法相比,该方法在识别率和计算要求方面都能提供更好的结果,而且在第一排序阶段,也证实了 LARS 算法在这些实验中比 Wilcoxon 秩和检验提供了更好的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验