Suppr超能文献

XPA 招募 ERCC1 参与核苷酸切除修复 (NER) 通路的构象决定因素:XPA 结合基序的结构与动力学。

Conformational determinants for the recruitment of ERCC1 by XPA in the nucleotide excision repair (NER) Pathway: structure and dynamics of the XPA binding motif.

机构信息

School of Chemistry, National University of Ireland Galway, Galway, Ireland.

出版信息

Biophys J. 2013 Jun 4;104(11):2503-11. doi: 10.1016/j.bpj.2013.04.023.

Abstract

XPA is an essential protein in the nucleotide excision repair (NER) pathway, in charge of recruiting the ERCC1-XPF endonuclease complex to the DNA damage site. The only currently available structural insight into the binding of XPA to ERCC1 derives from the solution NMR structure of a complex between the ERCC1 central fragment and a 14-residue peptide, corresponding to the highly conserved binding motif of the XPA N-terminus, XPA₆₇₋₈₀. The extensive all-atom molecular-dynamics simulation study of the XPA₆₇₋₈₀ peptide both bound to the ERCC1 central fragment and free in solution presented here completes the profile of the structural determinants responsible for the ERCC1/XPA₆₇₋₈₀ complex stability. In addition to the wild-type, this study also looks at specific XPA₆₇₋₈₀ mutants in complex with the ERCC1 central domain and thus contributes to defining the conformational determinants for binding, as well as all of the essential structural elements necessary for the rational design of an XPA-based, ERCC1-specific inhibitor.

摘要

XPA 是核苷酸切除修复(NER)途径中的一种必需蛋白,负责将 ERCC1-XPF 内切酶复合物招募到 DNA 损伤部位。目前唯一可用的关于 XPA 与 ERCC1 结合的结构见解来自于 ERCC1 中心片段与 14 个残基肽之间复合物的溶液 NMR 结构,该肽对应于 XPA N 端高度保守的结合基序 XPA₆₇₋₈₀。本文中提出的对结合 ERCC1 中心片段的 XPA₆₇₋₈₀ 肽以及游离于溶液中的 XPA₆₇₋₈₀ 肽的全原子分子动力学模拟研究,完整描绘了决定 ERCC1/XPA₆₇₋₈₀ 复合物稳定性的结构决定因素。除了野生型,这项研究还研究了与 ERCC1 中心结构域结合的特定 XPA₆₇₋₈₀ 突变体,因此有助于确定结合的构象决定因素,以及基于 XPA 的、针对 ERCC1 的抑制剂的合理设计所需的所有基本结构要素。

相似文献

2
The XPA-binding domain of ERCC1 is required for nucleotide excision repair but not other DNA repair pathways.
J Biol Chem. 2010 Feb 5;285(6):3705-3712. doi: 10.1074/jbc.M109.067538. Epub 2009 Nov 23.
3
Structural basis for the recruitment of ERCC1-XPF to nucleotide excision repair complexes by XPA.
EMBO J. 2007 Nov 14;26(22):4768-76. doi: 10.1038/sj.emboj.7601894. Epub 2007 Oct 18.
4
DNA repair gets physical: mapping an XPA-binding site on ERCC1.
DNA Repair (Amst). 2008 May 3;7(5):819-26. doi: 10.1016/j.dnarep.2008.01.018. Epub 2008 Mar 14.
6
New design of nucleotide excision repair (NER) inhibitors for combination cancer therapy.
J Mol Graph Model. 2016 Apr;65:71-82. doi: 10.1016/j.jmgm.2016.02.010. Epub 2016 Feb 26.
7
Small Molecule Antagonists of the DNA Repair ERCC1/XPA Protein-Protein Interaction.
ChemMedChem. 2024 Apr 16;19(8):e202300648. doi: 10.1002/cmdc.202300648. Epub 2024 Mar 5.
10
Mutations in XPA that prevent association with ERCC1 are defective in nucleotide excision repair.
Mol Cell Biol. 1995 Apr;15(4):1993-8. doi: 10.1128/MCB.15.4.1993.

引用本文的文献

1
Does the XPA-FEN1 Interaction Concern to Nucleotide Excision Repair or Beyond?
Biomolecules. 2024 Jul 9;14(7):814. doi: 10.3390/biom14070814.
2
Small Molecule Antagonists of the DNA Repair ERCC1/XPA Protein-Protein Interaction.
ChemMedChem. 2024 Apr 16;19(8):e202300648. doi: 10.1002/cmdc.202300648. Epub 2024 Mar 5.
3
The XPA Protein-Life under Precise Control.
Cells. 2022 Nov 22;11(23):3723. doi: 10.3390/cells11233723.
4
Thioridazine Enhances Cisplatin-Induced DNA Damage in Cisplatin-Resistant Human Lung Cancer Cells.
Evid Based Complement Alternat Med. 2022 Mar 30;2022:3702665. doi: 10.1155/2022/3702665. eCollection 2022.
5
Targeting DNA repair and replication stress in the treatment of ovarian cancer.
Int J Clin Oncol. 2017 Aug;22(4):619-628. doi: 10.1007/s10147-017-1145-7. Epub 2017 Jun 22.
6
Role of the XPA protein in the NER pathway: A perspective on the function of structural disorder in macromolecular assembly.
Comput Struct Biotechnol J. 2015 Dec 8;14:78-85. doi: 10.1016/j.csbj.2015.11.007. eCollection 2016.
7
Mutation analysis of the ERCC4/FANCQ gene in hereditary breast cancer.
PLoS One. 2014 Jan 21;9(1):e85334. doi: 10.1371/journal.pone.0085334. eCollection 2014.

本文引用的文献

1
GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation.
J Chem Theory Comput. 2008 Mar;4(3):435-47. doi: 10.1021/ct700301q.
3
DNA repair endonuclease ERCC1-XPF as a novel therapeutic target to overcome chemoresistance in cancer therapy.
Nucleic Acids Res. 2012 Nov 1;40(20):9990-10004. doi: 10.1093/nar/gks818. Epub 2012 Aug 31.
4
DNA repair inhibitors: the next major step to improve cancer therapy.
Curr Top Med Chem. 2012;12(12):1376-90. doi: 10.2174/156802612801319070.
5
The mechanism for proton pumping in cytochrome c oxidase from an electrostatic and quantum chemical perspective.
Biochim Biophys Acta. 2012 Apr;1817(4):495-505. doi: 10.1016/j.bbabio.2011.09.014. Epub 2011 Sep 28.
6
Cellular responses to Cisplatin-induced DNA damage.
J Nucleic Acids. 2010 Aug 8;2010:201367. doi: 10.4061/2010/201367.
7
Scrutinizing molecular mechanics force fields on the submicrosecond timescale with NMR data.
Biophys J. 2010 Jul 21;99(2):647-55. doi: 10.1016/j.bpj.2010.04.062.
8
Downregulation of XPF-ERCC1 enhances cisplatin efficacy in cancer cells.
DNA Repair (Amst). 2010 Jul 1;9(7):745-53. doi: 10.1016/j.dnarep.2010.03.010. Epub 2010 Apr 24.
9
The XPA-binding domain of ERCC1 is required for nucleotide excision repair but not other DNA repair pathways.
J Biol Chem. 2010 Feb 5;285(6):3705-3712. doi: 10.1074/jbc.M109.067538. Epub 2009 Nov 23.
10
Evaluating the performance of the ff99SB force field based on NMR scalar coupling data.
Biophys J. 2009 Aug 5;97(3):853-6. doi: 10.1016/j.bpj.2009.04.063.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验