Mitra Riten, Müller Peter, Liang Shoudan, Xu Yanxun, Ji Yuan
ICES, University of Texas at Austin, USA.
Circ Cardiovasc Genet. 2013 Aug;6(4):419-26. doi: 10.1161/CIRCGENETICS.113.000100. Epub 2013 Jun 7.
Histones are proteins that wrap DNA around in small spherical structures called nucleosomes. Histone modifications (HMs) refer to the post-translational modifications to the histone tails. At a particular genomic locus, each of these HMs can either be present or absent, and the combinatory patterns of the presence or absence of multiple HMs, or the histone codes, are believed to coregulate important biological processes. We aim to use raw data on HM markers at different genomic loci to (1) decode the complex biological network of HMs in a single region, and (2) demonstrate how the HM networks differ in different regulatory regions. We suggest that these differences in network attributes form a significant link between histones and genomic functions.
We develop a powerful graphical model under the Bayesian paradigm. Posterior inference is fully probabilistic, allowing us to compute the probabilities of distinct dependence patterns of the HMs using graphs. Furthermore, our model-based framework allows for easy but important extensions for inference on differential networks under various conditions, such as the different annotations of the genomic locations (eg, promoters versus insulators). We applied these models to ChIP-Seq data based on CD4+ T lymphocytes. The results confirmed many existing findings and provided a unified tool to generate various promising hypotheses. Differential network analyses revealed new insights on coregulation of HMs of transcriptional activities in different genomic regions.
The use of Bayesian graphical models and borrowing strength across different conditions provide high power to infer histone networks and their differences.
组蛋白是一种蛋白质,它将DNA缠绕成称为核小体的小球形结构。组蛋白修饰(HMs)是指对组蛋白尾部的翻译后修饰。在特定的基因组位点,这些组蛋白修饰中的每一种都可能存在或不存在,并且多种组蛋白修饰存在或不存在的组合模式,即组蛋白编码,被认为共同调节重要的生物学过程。我们旨在使用不同基因组位点上组蛋白修饰标记的原始数据来(1)解码单个区域中组蛋白修饰的复杂生物网络,以及(2)展示组蛋白修饰网络在不同调控区域是如何不同的。我们认为这些网络属性的差异在组蛋白和基因组功能之间形成了重要联系。
我们在贝叶斯范式下开发了一个强大的图形模型。后验推断是完全概率性的,这使我们能够使用图形计算组蛋白修饰不同依赖模式的概率。此外,我们基于模型的框架允许在各种条件下对差异网络进行推断时进行简单但重要的扩展,例如基因组位置的不同注释(例如,启动子与绝缘子)。我们将这些模型应用于基于CD4 + T淋巴细胞的ChIP-Seq数据。结果证实了许多现有发现,并提供了一个统一的工具来生成各种有前景的假设。差异网络分析揭示了不同基因组区域转录活性组蛋白修饰共同调节的新见解。
使用贝叶斯图形模型并在不同条件下借用强度,为推断组蛋白网络及其差异提供了强大的能力。