Suppr超能文献

从转基因和基因敲除小鼠分离的原代鼠骨骼肌细胞中线粒体功能和胰岛素敏感性的改变:ogg1 的作用。

Alteration of mitochondrial function and insulin sensitivity in primary mouse skeletal muscle cells isolated from transgenic and knockout mice: role of ogg1.

机构信息

Department of Cell Biology and Neuroscience, College of Medicine, University of South Alabama, Mobile, AL 36688, USA.

出版信息

Endocrinology. 2013 Aug;154(8):2640-9. doi: 10.1210/en.2013-1076. Epub 2013 Jun 7.

Abstract

Recent evidence has linked mitochondrial dysfunction and DNA damage, increased oxidative stress in skeletal muscle, and insulin resistance (IR). The purpose of this study was to determine the role of the DNA repair enzyme, human 8-oxoguanine DNA glycosylase/apurinic/apyrimidinic lyase (hOGG1), on palmitate-induced mitochondrial dysfunction and IR in primary cultures of skeletal muscle derived from hind limb of ogg1(-/-) knockout mice and transgenic mice, which overexpress human (hOGG1) in mitochondria (transgenic [Tg]/MTS-hOGG1). Following exposure to palmitate, we evaluated mitochondrial DNA (mtDNA) damage, mitochondrial function, production of mitochondrial reactive oxygen species (mtROS), mitochondrial mass, JNK activation, insulin signaling pathways, and glucose uptake. Palmitate-induced mtDNA damage, mtROS, mitochondrial dysfunction, and activation of JNK were all diminished, whereas ATP levels, mitochondrial mass, insulin-stimulated phosphorylation of Akt (Ser 473), and insulin sensitivity were increased in primary myotubes isolated from Tg/MTS-hOGG1 mice compared to myotubes isolated from either knockout or wild-type mice. In addition, both basal and maximal respiratory rates during mitochondrial oxidation on pyruvate showed a variable response, with some animals displaying an increased respiration in muscle fibers isolated from the transgenic mice. Our results support the model that DNA repair enzyme OGG1 plays a pivotal role in repairing mtDNA damage, and consequently, in mtROS production and regulating downstream events leading to IR in skeletal muscle.

摘要

最近的证据表明,线粒体功能障碍和 DNA 损伤、骨骼肌中氧化应激增加以及胰岛素抵抗(IR)之间存在关联。本研究的目的是确定 DNA 修复酶人 8-氧鸟嘌呤 DNA 糖基化酶/脱嘌呤/脱嘧啶核酸内切酶(hOGG1)在脂肪酸诱导的线粒体功能障碍和来自后肢 ogg1(-/-) 基因敲除小鼠和过表达人(hOGG1)线粒体的转基因(Tg)/MTS-hOGG1 小鼠骨骼肌原代培养物中 IR 中的作用。在暴露于棕榈酸后,我们评估了线粒体 DNA(mtDNA)损伤、线粒体功能、线粒体活性氧(mtROS)的产生、线粒体质量、JNK 激活、胰岛素信号通路和葡萄糖摄取。与从基因敲除或野生型小鼠中分离的肌管相比,来自 Tg/MTS-hOGG1 小鼠的肌管中棕榈酸诱导的 mtDNA 损伤、mtROS、线粒体功能障碍和 JNK 激活均减少,而 ATP 水平、线粒体质量、胰岛素刺激的 Akt(Ser 473)磷酸化和胰岛素敏感性增加。此外,在丙酮酸的线粒体氧化过程中,基础和最大呼吸速率均表现出不同的反应,一些动物显示出从转基因小鼠分离的肌肉纤维中的呼吸增加。我们的结果支持这样的模型,即 DNA 修复酶 OGG1 在修复 mtDNA 损伤以及随后的 mtROS 产生和调节导致骨骼肌 IR 的下游事件中发挥关键作用。

相似文献

10
Chemerin-induced mitochondrial dysfunction in skeletal muscle.凯莫瑞蛋白诱导的骨骼肌线粒体功能障碍。
J Cell Mol Med. 2015 May;19(5):986-95. doi: 10.1111/jcmm.12487. Epub 2015 Mar 6.

引用本文的文献

2
Dynamic features of human mitochondrial DNA maintenance and transcription.人类线粒体DNA维持与转录的动态特征
Front Cell Dev Biol. 2022 Sep 7;10:984245. doi: 10.3389/fcell.2022.984245. eCollection 2022.
7
On the epigenetic role of guanosine oxidation.关于鸟嘌呤氧化的表观遗传作用。
Redox Biol. 2020 Jan;29:101398. doi: 10.1016/j.redox.2019.101398. Epub 2019 Dec 6.

本文引用的文献

8
Oxidative DNA damage and obesity in type 2 diabetes mellitus.2 型糖尿病中的氧化 DNA 损伤与肥胖。
Eur J Endocrinol. 2011 Jun;164(6):899-904. doi: 10.1530/EJE-11-0053. Epub 2011 Mar 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验