Suppr超能文献

基于时间的工程化木糖利用酿酒酵母比较转录组学分析鉴定了乙醇生产过程中的温度响应基因。

Time-based comparative transcriptomics in engineered xylose-utilizing Saccharomyces cerevisiae identifies temperature-responsive genes during ethanol production.

机构信息

Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe, 657-8501, Japan.

出版信息

J Ind Microbiol Biotechnol. 2013 Sep;40(9):1039-50. doi: 10.1007/s10295-013-1293-3. Epub 2013 Jun 9.

Abstract

Agricultural residues comprising lignocellulosic materials are excellent sources of pentose sugar, which can be converted to ethanol as fuel. Ethanol production via consolidated bioprocessing requires a suitable microorganism to withstand the harsh fermentation environment of high temperature, high ethanol concentration, and exposure to inhibitors. We genetically enhanced an industrial Saccharomyces cerevisiae strain, sun049, enabling it to uptake xylose as the sole carbon source at high fermentation temperature. This strain was able to produce 13.9 g/l ethanol from 50 g/l xylose at 38 °C. To better understand the xylose consumption ability during long-term, high-temperature conditions, we compared by transcriptomics two fermentation conditions: high temperature (38 °C) and control temperature (30 °C) during the first 12 h of fermentation. This is the first long-term, time-based transcriptomics approach, and it allowed us to discover the role of heat-responsive genes when xylose is the sole carbon source. The results suggest that genes related to amino acid, cell wall, and ribosomal protein synthesis are down-regulated under heat stress. To allow cell stability and continuous xylose uptake in order to produce ethanol, hexose transporter HXT5, heat shock proteins, ubiquitin proteins, and proteolysis were all induced at high temperature. We also speculate that the strong relationship between high temperature and increased xylitol accumulation represents the cell's mechanism to protect itself from heat degradation.

摘要

农业残余物包括木质纤维素材料,是戊糖的极好来源,戊糖可以转化为乙醇作为燃料。通过整合生物加工生产乙醇需要一种合适的微生物来承受高温、高乙醇浓度和抑制剂暴露的恶劣发酵环境。我们对工业酿酒酵母菌株 sun049 进行了基因增强,使其能够在高温发酵条件下以木糖作为唯一碳源进行吸收。该菌株能够在 38°C 下从 50g/L 的木糖中生产 13.9g/L 的乙醇。为了更好地了解在长期高温条件下木糖的消耗能力,我们通过转录组学比较了两种发酵条件:高温(38°C)和对照温度(30°C)在发酵的前 12 小时。这是首次进行的长期、基于时间的转录组学方法,使我们能够发现当木糖是唯一碳源时,热响应基因的作用。结果表明,在热应激下,与氨基酸、细胞壁和核糖体蛋白合成相关的基因下调。为了使细胞稳定并持续吸收木糖以生产乙醇,在高温下,己糖转运蛋白 HXT5、热休克蛋白、泛素蛋白和蛋白水解都被诱导。我们还推测,高温与木糖醇积累增加之间的强相关性代表了细胞保护自身免受热降解的机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验