Gonçalves Davi L, Matsushika Akinori, de Sales Belisa B, Goshima Tetsuya, Bon Elba P S, Stambuk Boris U
Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil.
Biomass Refinery Research Center (BRRC), National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-hiroshima, Hiroshima 739-0046, Japan.
Enzyme Microb Technol. 2014 Sep;63:13-20. doi: 10.1016/j.enzmictec.2014.05.003. Epub 2014 May 17.
Since the uptake of xylose is believed to be one of the rate-limiting steps for xylose ethanol fermentation by recombinant Saccharomyces cerevisiae strains, we transformed a hxt-null strain lacking the major hexose transporters (hxt1Δ-hxt7Δ and gal2Δ) with an integrative plasmid to overexpress the genes for xylose reductase (XYL1), xylitol dehydrogenase (XYL2) and xylulokinase (XKS1), and analyzed the impact that overexpression of the HXT1, HXT2, HXT5 or HXT7 permeases have in anaerobic batch fermentations using xylose, glucose, or xylose plus glucose as carbon sources. Our results revealed that the low-affinity HXT1 permease allowed the maximal consumption of sugars and ethanol production rates during xylose/glucose co-fermentations, but was incapable to allow xylose uptake when this sugar was the only carbon source. The moderately high-affinity HXT5 permease was a poor glucose transporter, and it also did not allow significant xylose uptake by the cells. The moderately high-affinity HXT2 permease allowed xylose uptake with the same rates as those observed during glucose consumption, even under co-fermentation conditions, but had the drawback of producing incomplete fermentations. Finally, the high-affinity HXT7 permease allowed efficient xylose fermentation, but during xylose/glucose co-fermentations this permease showed a clear preference for glucose. Thus, our results indicate that approaches to engineer S. cerevisiae HXT transporters to improve second generation bioethanol production need to consider the composition of the biomass sugar syrup, whereby the HXT1 transporter seems more suitable for hydrolysates containing xylose/glucose blends, whereas the HXT7 permease would be a better choice for xylose-enriched sugar streams.
由于木糖摄取被认为是重组酿酒酵母菌株进行木糖乙醇发酵的限速步骤之一,我们用整合质粒转化了一个缺乏主要己糖转运蛋白(hxt1Δ - hxt7Δ和gal2Δ)的hxt缺失菌株,以过表达木糖还原酶(XYL1)、木糖醇脱氢酶(XYL2)和木酮糖激酶(XKS1)的基因,并分析了HXT1、HXT2、HXT5或HXT7通透酶的过表达在以木糖、葡萄糖或木糖加葡萄糖作为碳源的厌氧分批发酵中的影响。我们的结果表明,低亲和力的HXT1通透酶在木糖/葡萄糖共发酵过程中能实现最大糖消耗和乙醇生产率,但当木糖是唯一碳源时无法实现木糖摄取。中等高亲和力的HXT5通透酶是一种较差的葡萄糖转运蛋白,它也不能使细胞大量摄取木糖。中等高亲和力的HXT2通透酶即使在共发酵条件下,也能以与葡萄糖消耗时相同的速率摄取木糖,但缺点是发酵不完全。最后,高亲和力的HXT7通透酶能实现高效木糖发酵,但在木糖/葡萄糖共发酵过程中,这种通透酶明显偏好葡萄糖。因此,我们的结果表明,工程改造酿酒酵母HXT转运蛋白以提高第二代生物乙醇产量的方法需要考虑生物质糖浆的成分,其中HXT1转运蛋白似乎更适合含木糖/葡萄糖混合物的水解产物,而HXT7通透酶对于富含木糖的糖流将是更好的选择。