Suppr超能文献

发现与基因表达变化相关的高分辨率差异 DNA 甲基化模式。

Discovering high-resolution patterns of differential DNA methylation that correlate with gene expression changes.

机构信息

Center for Pharmacogenomics, Department of Medicine, Washington University School of Medicine, 660 S. Euclid Ave, Campus Box 8220, St. Louis, MO 63110, USA.

出版信息

Nucleic Acids Res. 2013 Aug;41(14):6816-27. doi: 10.1093/nar/gkt482. Epub 2013 Jun 7.

Abstract

Methylation of the CpG-rich region (CpG island) overlapping a gene's promoter is a generally accepted mechanism for silencing expression. While recent technological advances have enabled measurement of DNA methylation and expression changes genome-wide, only modest correlations between differential methylation at gene promoters and expression have been found. We hypothesize that stronger associations are not observed because existing analysis methods oversimplify their representation of the data and do not capture the diversity of existing methylation patterns. Recently, other patterns such as CpG island shore methylation and long partially hypomethylated domains have also been linked with gene silencing. Here, we detail a new approach for discovering differential methylation patterns associated with expression change using genome-wide high-resolution methylation data: we represent differential methylation as an interpolated curve, or signature, and then identify groups of genes with similarly shaped signatures and corresponding expression changes. Our technique uncovers a diverse set of patterns that are conserved across embryonic stem cell and cancer data sets. Overall, we find strong associations between these methylation patterns and expression. We further show that an extension of our method also outperforms other approaches by generating a longer list of genes with higher quality associations between differential methylation and expression.

摘要

CpG 丰富区域(CpG 岛)的甲基化是一种普遍接受的基因启动子表达沉默机制。虽然最近的技术进步使得能够在全基因组范围内测量 DNA 甲基化和表达变化,但在基因启动子的差异甲基化与表达之间仅发现了适度的相关性。我们假设没有观察到更强的关联,因为现有的分析方法过于简化了数据的表示,并且没有捕获到现有甲基化模式的多样性。最近,其他模式,如 CpG 岛岸甲基化和长部分低甲基化区域,也与基因沉默有关。在这里,我们详细介绍了一种使用全基因组高分辨率甲基化数据发现与表达变化相关的差异甲基化模式的新方法:我们将差异甲基化表示为插值曲线或特征,然后识别具有相似形状特征和相应表达变化的基因组。我们的技术揭示了跨越胚胎干细胞和癌症数据集的多样化模式。总的来说,我们发现这些甲基化模式与表达之间存在很强的关联。我们进一步表明,我们方法的扩展通过生成具有差异甲基化和表达之间更高质量关联的更长基因列表,也优于其他方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验