Suppr超能文献

基因表达的系统发生分析。

Phylogenetic analysis of gene expression.

机构信息

*Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA; Department of Biostatistics and Center for Statistical Sciences, Brown University, Providence, RI 02903, USA.

出版信息

Integr Comp Biol. 2013 Nov;53(5):847-56. doi: 10.1093/icb/ict068. Epub 2013 Jun 7.

Abstract

Phylogenetic analyses of gene expression have great potential for addressing a wide range of questions. These analyses will, for example, identify genes that have evolutionary shifts in expression that are correlated with evolutionary changes in morphological, physiological, and developmental characters of interest. This will provide entirely new opportunities to identify genes related to particular phenotypes. There are, however, 3 key challenges that must be addressed for such studies to realize their potential. First, data on gene expression must be measured from multiple species, some of which may be field-collected, and parameterized in such a way that they can be compared across species. Second, it will be necessary to develop comparative phylogenetic methods suitable for large multidimensional datasets. In most phylogenetic comparative studies to date, the number n of independent observations (independent contrasts) has been greater than the number p of variables (characters). The behavior of comparative methods for these classic problems is now well understood under a wide variety of conditions. In studies of gene expression, and in studies based on other high-throughput tools, the number n of samples is dwarfed by the number p of variables. The estimated covariance matrices will be singular, complicating their analysis and interpretation, and prone to spurious results. Third, new approaches are needed to investigate the expression of the many genes whose phylogenies are not congruent with species phylogenies due to gene loss, gene duplication, and incomplete lineage sorting. Here we outline general considerations of project design for phylogenetic analyses of gene expression and suggest solutions to these three categories of challenges. These topics are relevant to high-throughput phenotypic data well beyond gene expression.

摘要

基因表达的系统发育分析在解决一系列问题方面具有巨大的潜力。这些分析将确定在进化过程中表达发生变化的基因,这些变化与感兴趣的形态、生理和发育特征的进化变化相关。这将为识别与特定表型相关的基因提供全新的机会。然而,要使这些研究发挥潜力,必须解决 3 个关键挑战。首先,必须从多个物种中测量基因表达数据,其中一些可能是野外采集的,并以可在物种间进行比较的方式进行参数化。其次,有必要开发适合大型多维数据集的比较系统发育方法。在迄今为止大多数系统发育比较研究中,独立观测值的数量 n(独立对比)大于变量的数量 p(特征)。在各种条件下,比较方法对这些经典问题的行为现在已经得到很好的理解。在基因表达研究中,以及在基于其他高通量工具的研究中,样本的数量 n 与变量的数量 p 相比相形见绌。估计的协方差矩阵将是奇异的,这使得它们的分析和解释变得复杂,并容易产生虚假结果。第三,需要新的方法来研究由于基因丢失、基因复制和不完全谱系分选而与物种系统发育不一致的许多基因的表达。在这里,我们概述了基因表达系统发育分析项目设计的一般考虑因素,并提出了解决这 3 类挑战的方法。这些主题与超出基因表达的高通量表型数据有关。

相似文献

1
Phylogenetic analysis of gene expression.基因表达的系统发生分析。
Integr Comp Biol. 2013 Nov;53(5):847-56. doi: 10.1093/icb/ict068. Epub 2013 Jun 7.
3
Euclidean nature of phylogenetic distance matrices.系统发育距离矩阵的欧几里得性质。
Syst Biol. 2011 Dec;60(6):826-32. doi: 10.1093/sysbio/syr066. Epub 2011 Jul 29.

引用本文的文献

2
MAFin: motif detection in multiple alignment files.MAFin:多序列比对文件中的基序检测
Bioinformatics. 2025 Mar 29;41(4). doi: 10.1093/bioinformatics/btaf125.
3
Leveraging graphical model techniques to study evolution on phylogenetic networks.利用图形模型技术研究系统发育网络上的进化。
Philos Trans R Soc Lond B Biol Sci. 2025 Feb 13;380(1919):20230310. doi: 10.1098/rstb.2023.0310. Epub 2025 Feb 20.

本文引用的文献

6
Regulatory variation within and between species.物种内和物种间的调控变异。
Annu Rev Genomics Hum Genet. 2011;12:327-46. doi: 10.1146/annurev-genom-082908-150139.
8
A Bayesian approach for fast and accurate gene tree reconstruction.一种快速准确的基因树重建的贝叶斯方法。
Mol Biol Evol. 2011 Jan;28(1):273-90. doi: 10.1093/molbev/msq189. Epub 2010 Jul 25.
9
Probabilistic orthology analysis.概率同源性分析。
Syst Biol. 2009 Aug;58(4):411-24. doi: 10.1093/sysbio/syp046. Epub 2009 Aug 18.
10
Statistical design and analysis of RNA sequencing data.RNA 测序数据的统计设计与分析。
Genetics. 2010 Jun;185(2):405-16. doi: 10.1534/genetics.110.114983. Epub 2010 May 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验