Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, 900 S. Ashland Avenue, Chicago, IL 60607, USA.
Nat Commun. 2013;4:1984. doi: 10.1038/ncomms2984.
A key mechanism of bacterial resistance to macrolide antibiotics is the dimethylation of a nucleotide in the large ribosomal subunit by erythromycin resistance methyltransferases. The majority of erm genes are expressed only when the antibiotic is present and the erythromycin resistance methyltransferase activity is critical for the survival of bacteria. Although these genes were among the first discovered inducible resistance genes, the molecular basis for their inducibility has remained unknown. Here we show that erythromycin resistance methyltransferase expression reduces cell fitness. Modification of the nucleotide in the ribosomal tunnel skews the cellular proteome by deregulating the expression of a set of proteins. We further demonstrate that aberrant translation of specific proteins results from abnormal interactions of the nascent peptide with the erythromycin resistance methyltransferase-modified ribosomal tunnel. Our findings provide a plausible explanation why erm genes have evolved to be inducible and underscore the importance of nascent peptide recognition by the ribosome for generating a balanced cellular proteome.
细菌对大环内酯类抗生素产生耐药性的一个关键机制是通过红霉素耐药甲基转移酶对大亚基核糖体核苷酸进行二甲化。大多数 erm 基因仅在存在抗生素时表达,并且红霉素耐药甲基转移酶的活性对细菌的存活至关重要。尽管这些基因是最早发现的可诱导耐药基因之一,但它们的诱导机制仍不清楚。在这里,我们表明红霉素耐药甲基转移酶的表达降低了细胞的适应性。核糖体隧道中核苷酸的修饰通过调节一组蛋白质的表达来使细胞蛋白质组发生扭曲。我们进一步证明,特定蛋白质的异常翻译是由于新生肽与红霉素耐药甲基转移酶修饰的核糖体隧道的异常相互作用所致。我们的研究结果提供了一个合理的解释,即 erm 基因为何进化为可诱导的,并强调了核糖体对新生肽的识别对于产生平衡的细胞蛋白质组的重要性。