State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China.
ACS Appl Mater Interfaces. 2013 Jul 10;5(13):6097-107. doi: 10.1021/am4009192. Epub 2013 Jun 25.
An ultrathin layer is investigated for its potential application of replacing conventional diffusion barriers and promoting interface adhesion for nanoelectric circuits with porous ultralow dielectrics. The porous ultralow dielectric (k ≈ 2.5) substrate is silanized by 3-aminopropyltrimethoxysilane (APTMS) to form the nanoadhesive layer by performing oxygen plasma modification and tailoring the silanization conditions appropriately. The high primary amine content is obtained in favor of strong interaction between amino groups and copper. And the results of leakage current measurements of metal-oxide-semiconductor capacitor structure demonstrate that the aminosilanization nanoadhesive layer can block copper diffusion effectively and guarantee the performance of devices. Furthermore, the results of four-point bending tests indicate that the nanoadhesive layer with monolayer structure can provide the satisfactory interface toughness up to 6.7 ± 0.5 J/m(2) for Cu/ultralow-k interface. Additionally, an annealing-enhanced interface toughness effect occurs because of the formation of Cu-N bonding and siloxane bridges below 500 °C. However, the interface is weakened on account of the oxidization of amines and copper as well as the breaking of Cu-N bonding above 500 °C. It is also found that APTMS nanoadhesive layer with multilayer structure provides relatively low interface toughness compared with monolayer structure, which is mainly correlated to the breaking of interlayer hydrogen bonding.
研究了超薄层在纳米电子电路中替代传统扩散势垒和促进界面粘附的潜在应用,这些纳米电子电路具有多孔超低介电常数(k≈2.5)。多孔超低介电常数(k≈2.5)衬底通过进行氧等离子体改性并用适当的条件进行硅烷化处理,用 3-氨丙基三甲氧基硅烷(APTMS)硅烷化,形成纳米粘附层。获得了高的伯胺含量,有利于氨基与铜之间的强相互作用。金属-氧化物-半导体电容器结构的漏电流测量结果表明,氨基硅烷纳米粘附层可以有效地阻止铜的扩散,并保证器件的性能。此外,四点弯曲试验的结果表明,单层结构的纳米粘附层可以提供令人满意的界面韧性,达到 6.7±0.5 J/m(2),用于 Cu/超低 k 界面。此外,由于在 500°C 以下形成 Cu-N 键合和硅氧烷桥,因此会发生退火增强的界面韧性效应。然而,由于胺和铜的氧化以及 Cu-N 键的断裂,界面在 500°C 以上会被削弱。还发现,与单层结构相比,具有多层结构的 APTMS 纳米粘附层提供的界面韧性相对较低,这主要与层间氢键的断裂有关。