Suppr超能文献

基于模型的可识别参数确定应用于生物乙醇生产的同步糖化和发酵过程模型。

Model-based identifiable parameter determination applied to a simultaneous saccharification and fermentation process model for bio-ethanol production.

机构信息

Chair of Process Dynamics and Operation, Technische Universität Berlin, Sekr.KWT-9, Str. Des 17. Juni 135, D-10623, Berlin, Germany.

出版信息

Biotechnol Prog. 2013 Jul-Aug;29(4):1064-82. doi: 10.1002/btpr.1753. Epub 2013 Jun 8.

Abstract

In this work, a methodology for the model-based identifiable parameter determination (MBIPD) is presented. This systematic approach is proposed to be used for structure and parameter identification of nonlinear models of biological reaction networks. Usually, this kind of problems are over-parameterized with large correlations between parameters. Hence, the related inverse problems for parameter determination and analysis are mathematically ill-posed and numerically difficult to solve. The proposed MBIPD methodology comprises several tasks: (i) model selection, (ii) tracking of an adequate initial guess, and (iii) an iterative parameter estimation step which includes an identifiable parameter subset selection (SsS) algorithm and accuracy analysis of the estimated parameters. The SsS algorithm is based on the analysis of the sensitivity matrix by rank revealing factorization methods. Using this, a reduction of the parameter search space to a reasonable subset, which can be reliably and efficiently estimated from available measurements, is achieved. The simultaneous saccharification and fermentation (SSF) process for bio-ethanol production from cellulosic material is used as case study for testing the methodology. The successful application of MBIPD to the SSF process demonstrates a relatively large reduction in the identified parameter space. It is shown by a cross-validation that using the identified parameters (even though the reduction of the search space), the model is still able to predict the experimental data properly. Moreover, it is shown that the model is easily and efficiently adapted to new process conditions by solving reduced and well conditioned problems.

摘要

在这项工作中,提出了一种基于模型的可辨识参数确定(MBIPD)方法。该系统方法旨在用于生物反应网络的非线性模型的结构和参数识别。通常,这种问题具有过大的参数相关性,因此参数确定和分析的相关逆问题在数学上是不适定的,在数值上也难以解决。所提出的 MBIPD 方法包括几个任务:(i)模型选择,(ii)跟踪适当的初始猜测,以及(iii)迭代参数估计步骤,其中包括可辨识参数子集选择(SsS)算法和估计参数的准确性分析。SsS 算法基于通过秩揭示分解方法对灵敏度矩阵的分析。通过这种方法,可以将参数搜索空间减少到一个合理的子集,该子集可以从可用的测量结果中可靠且高效地估计。同时糖化和发酵(SSF)过程用于从纤维素材料生产生物乙醇作为测试方法的案例研究。MBIPD 在 SSF 过程中的成功应用证明了所确定的参数空间相对较大。通过交叉验证表明,即使减少了搜索空间,使用所确定的参数,模型仍然能够正确地预测实验数据。此外,通过解决简化且条件良好的问题,表明模型很容易并且有效地适应新的工艺条件。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验