Bioorganic Research Institute, Suntory Foundation for Life Sciences, 1-1-1 Wakayamadai Shimamoto, Mishima, Osaka, 618-8503, Japan.
J Biomol NMR. 2013 Jul;56(3):275-83. doi: 10.1007/s10858-013-9747-5. Epub 2013 Jun 11.
Relaxation dispersion spectroscopy is one of the most widely used techniques for the analysis of protein dynamics. To obtain a detailed understanding of the protein function from the view point of dynamics, it is essential to fit relaxation dispersion data accurately. The grid search method is commonly used for relaxation dispersion curve fits, but it does not always find the global minimum that provides the best-fit parameter set. Also, the fitting quality does not always improve with increase of the grid size although the computational time becomes longer. This is because relaxation dispersion curve fitting suffers from a local minimum problem, which is a general problem in non-linear least squares curve fitting. Therefore, in order to fit relaxation dispersion data rapidly and accurately, we developed a new fitting program called GLOVE that minimizes global and local parameters alternately, and incorporates a Monte-Carlo minimization method that enables fitting parameters to pass through local minima with low computational cost. GLOVE also implements a random search method, which sets up initial parameter values randomly within user-defined ranges. We demonstrate here that the combined use of the three methods can find the global minimum more rapidly and more accurately than grid search alone.
弛豫弥散谱是分析蛋白质动力学最广泛使用的技术之一。为了从动力学的角度深入了解蛋白质的功能,准确拟合弛豫弥散数据是至关重要的。网格搜索方法通常用于弛豫弥散曲线拟合,但它并不总是能找到全局最小值,从而提供最佳拟合参数集。此外,尽管计算时间变长,但拟合质量并不总是随着网格尺寸的增加而提高。这是因为弛豫弥散曲线拟合存在局部最小值问题,这是非线性最小二乘曲线拟合的一个普遍问题。因此,为了快速准确地拟合弛豫弥散数据,我们开发了一种新的拟合程序,称为 GLOVE,它可以交替最小化全局和局部参数,并结合了一种蒙特卡罗最小化方法,使拟合参数能够以较低的计算成本通过局部最小值。GLOVE 还实现了一种随机搜索方法,该方法在用户定义的范围内随机设置初始参数值。我们在这里证明,三种方法的结合使用可以比单独使用网格搜索更快、更准确地找到全局最小值。