Suppr超能文献

未折叠蛋白:构象集合及其在蛋白质折叠、功能和发病机制中的作用。

Under-folded proteins: Conformational ensembles and their roles in protein folding, function, and pathogenesis.

作者信息

Uversky Vladimir N

机构信息

Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612; Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, 142292, Moscow Region, Russia.

出版信息

Biopolymers. 2013 Nov;99(11):870-87. doi: 10.1002/bip.22298.

Abstract

For decades, protein function was intimately linked to the presence of a unique, aperiodic crystal-like structure in a functional protein. The two only places for conformational ensembles of under-folded (or partially folded) protein forms in this picture were either the end points of the protein denaturation processes or transiently populated folding intermediates. Recent years witnessed dramatic change in this perception and conformational ensembles, which the under-folded proteins are, have moved from the shadow. Accumulated to date data suggest that a protein can exist in at least three global forms-functional and folded, functional and intrinsically disordered (nonfolded), and nonfunctional and misfolded/aggregated. Under-folded protein states are crucial for each of these forms, serving as important folding intermediates of ordered proteins, or as functional states of intrinsically disordered proteins (IDPs) and IDP regions (IDPRs), or as pathology triggers of misfolded proteins. Based on these observations, conformational ensembles of under-folded proteins can be classified as transient (folding and misfolding intermediates) and permanent (IDPs and stable misfolded proteins). Permanently under-folded proteins can further be split into intentionally designed (IDPs and IDPRs) and unintentionally designed (misfolded proteins). Although intrinsic flexibility, dynamics, and pliability are crucial for all under-folded proteins, the different categories of under-foldedness are differently encoded in protein amino acid sequences.

摘要

几十年来,蛋白质功能与功能性蛋白质中独特的、非周期性的晶体状结构密切相关。在这种情况下,未折叠(或部分折叠)蛋白质形式的构象集合仅存在于两个地方,即蛋白质变性过程的端点或短暂出现的折叠中间体。近年来,这种观念和构象集合发生了巨大变化,未折叠蛋白质已从阴影中走了出来。迄今为止积累的数据表明,蛋白质至少可以以三种整体形式存在——功能性且折叠的、功能性且内在无序(未折叠)的、非功能性且错误折叠/聚集的。未折叠蛋白质状态对这些形式中的每一种都至关重要,它们可以作为有序蛋白质的重要折叠中间体,或作为内在无序蛋白质(IDP)和内在无序蛋白质区域(IDPR)的功能状态,或作为错误折叠蛋白质的病理触发因素。基于这些观察结果,未折叠蛋白质的构象集合可分为瞬态(折叠和错误折叠中间体)和永久态(IDP和稳定的错误折叠蛋白质)。永久未折叠的蛋白质可进一步分为有意设计的(IDP和IDPR)和无意设计的(错误折叠蛋白质)。尽管内在的灵活性、动态性和柔韧性对所有未折叠蛋白质都至关重要,但不同类别的未折叠状态在蛋白质氨基酸序列中的编码方式有所不同。

相似文献

2
Proteins without unique 3D structures: biotechnological applications of intrinsically unstable/disordered proteins.
Biotechnol J. 2015 Mar;10(3):356-66. doi: 10.1002/biot.201400374. Epub 2014 Oct 6.
3
Intrinsically disordered proteins in crowded milieu: when chaos prevails within the cellular gumbo.
Cell Mol Life Sci. 2018 Nov;75(21):3907-3929. doi: 10.1007/s00018-018-2894-9. Epub 2018 Jul 31.
4
Conformational propensities of intrinsically disordered proteins influence the mechanism of binding and folding.
Proc Natl Acad Sci U S A. 2015 Aug 4;112(31):9614-9. doi: 10.1073/pnas.1512799112. Epub 2015 Jul 20.
5
Functions of short lifetime biological structures at large: the case of intrinsically disordered proteins.
Brief Funct Genomics. 2020 Jan 22;19(1):60-68. doi: 10.1093/bfgp/ely023.
6
Order, Disorder, and Everything in Between.
Molecules. 2016 Aug 19;21(8):1090. doi: 10.3390/molecules21081090.
7
Do sequence neighbours of intrinsically disordered regions promote structural flexibility in intrinsically disordered proteins?
J Struct Biol. 2020 Feb 1;209(2):107428. doi: 10.1016/j.jsb.2019.107428. Epub 2019 Nov 20.
9
Self-assembling systems comprising intrinsically disordered protein polymers like elastin-like recombinamers.
J Pept Sci. 2022 Jan;28(1):e3362. doi: 10.1002/psc.3362. Epub 2021 Sep 20.
10
Intrinsically disordered proteins may escape unwanted interactions via functional misfolding.
Biochim Biophys Acta. 2011 May;1814(5):693-712. doi: 10.1016/j.bbapap.2011.03.010. Epub 2011 Mar 31.

引用本文的文献

2
The protein disorder cycle.
Biophys Rev. 2021 Nov 3;13(6):1155-1162. doi: 10.1007/s12551-021-00853-2. eCollection 2021 Dec.
3
Life in Phases: Intra- and Inter- Molecular Phase Transitions in Protein Solutions.
Biomolecules. 2019 Dec 8;9(12):842. doi: 10.3390/biom9120842.
5
The Structural and Functional Diversity of Intrinsically Disordered Regions in Transmembrane Proteins.
J Membr Biol. 2019 Oct;252(4-5):273-292. doi: 10.1007/s00232-019-00069-2. Epub 2019 May 28.
6
Digested disorder: Quarterly intrinsic disorder digest (April-May-June, 2013).
Intrinsically Disord Proteins. 2013 Jan 1;1(1):e27454. doi: 10.4161/idp.27454. eCollection 2013 Jan-Dec.
7
Disorder in the lifetime of a protein.
Intrinsically Disord Proteins. 2013 Nov 7;1(1):e26782. doi: 10.4161/idp.26782. eCollection 2013 Jan-Dec.
8
Digested disorder, Quarterly intrinsic disorder digest (October-November-December, 2013).
Intrinsically Disord Proteins. 2015 Mar 9;3(1):e984569. doi: 10.4161/21690707.2014.984569. eCollection 2015.
9
Are Charge-State Distributions a Reliable Tool Describing Molecular Ensembles of Intrinsically Disordered Proteins by Native MS?
J Am Soc Mass Spectrom. 2017 Jan;28(1):21-28. doi: 10.1007/s13361-016-1490-1. Epub 2016 Oct 11.
10
Molecular signaling involving intrinsically disordered proteins in prostate cancer.
Asian J Androl. 2016 Sep-Oct;18(5):673-81. doi: 10.4103/1008-682X.181817.

本文引用的文献

1
Protein Folding: A Perspective from Theory and Experiment.
Angew Chem Int Ed Engl. 1998 Apr 20;37(7):868-893. doi: 10.1002/(SICI)1521-3773(19980420)37:7<868::AID-ANIE868>3.0.CO;2-H.
2
Potential conformational heterogeneity of p53 bound to S100B(ββ).
J Mol Biol. 2013 Mar 25;425(6):999-1010. doi: 10.1016/j.jmb.2013.01.001. Epub 2013 Jan 8.
3
Unusual biophysics of intrinsically disordered proteins.
Biochim Biophys Acta. 2013 May;1834(5):932-51. doi: 10.1016/j.bbapap.2012.12.008. Epub 2012 Dec 23.
4
Intrinsic disorder-based protein interactions and their modulators.
Curr Pharm Des. 2013;19(23):4191-213. doi: 10.2174/1381612811319230005.
7
Expanding the proteome: disordered and alternatively folded proteins.
Q Rev Biophys. 2011 Nov;44(4):467-518. doi: 10.1017/S0033583511000060. Epub 2011 Jul 1.
8
The expanding view of protein-protein interactions: complexes involving intrinsically disordered proteins.
Phys Biol. 2011 Jun;8(3):035003. doi: 10.1088/1478-3975/8/3/035003. Epub 2011 May 13.
9
Unstructural biology coming of age.
Curr Opin Struct Biol. 2011 Jun;21(3):419-25. doi: 10.1016/j.sbi.2011.03.012. Epub 2011 Apr 21.
10
Intrinsically disordered proteins from A to Z.
Int J Biochem Cell Biol. 2011 Aug;43(8):1090-103. doi: 10.1016/j.biocel.2011.04.001. Epub 2011 Apr 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验