Center for Regenerative Developmental Biology, The Forsyth Institute, Cambridge, Massachusetts, USA.
Mol Cell Biol. 2013 Aug;33(16):3099-112. doi: 10.1128/MCB.00524-13. Epub 2013 Jun 10.
Improving the knowledge of disease-causing genes is a unique challenge in human health. Although it is known that genes causing similar diseases tend to lie close to one another in a network of protein-protein or functional interactions, the identification of these protein-protein networks is difficult to unravel. Here, we show that Msx1, Snail, Lhx6, Lhx8, Sp3, and Lef1 interact in vitro and in vivo, revealing the existence of a novel context-specific protein network. These proteins are all expressed in the neural crest-derived dental mesenchyme and cause tooth agenesis disorder when mutated in mouse and/or human. We also identified an in vivo direct target for Msx1 function, the cyclin D-dependent kinase (CDK) inhibitor p19(ink4d), whose transcription is differentially modulated by the protein network. Considering the important role of p19(ink4d) as a cell cycle regulator, these results provide evidence for the first time of the unique plasticity of the Msx1-dependent network of proteins in conferring differential transcriptional output and in controlling the cell cycle through the regulation of a cyclin D-dependent kinase inhibitor. Collectively, these data reveal a novel protein network operating in the neural crest-derived dental mesenchyme that is relevant for many other areas of developmental and evolutionary biology.
提高对致病基因的认识是人类健康面临的一个独特挑战。虽然已知导致相似疾病的基因往往在蛋白质-蛋白质或功能相互作用网络中彼此靠近,但这些蛋白质-蛋白质网络的识别却难以解决。在这里,我们展示了 Msx1、Snail、Lhx6、Lhx8、Sp3 和 Lef1 在体外和体内相互作用,揭示了一个新的特定于上下文的蛋白质网络的存在。这些蛋白质都在神经嵴衍生的牙间质中表达,当在小鼠和/或人类中发生突变时会导致牙齿缺失障碍。我们还鉴定了 Msx1 功能的一个体内直接靶标,即细胞周期蛋白依赖性激酶(CDK)抑制剂 p19(ink4d),其转录受到蛋白质网络的差异调节。考虑到 p19(ink4d)作为细胞周期调节剂的重要作用,这些结果首次提供了证据,证明了 Msx1 依赖性蛋白质网络在赋予不同的转录输出以及通过调节细胞周期蛋白依赖性激酶抑制剂来控制细胞周期方面的独特可塑性。总的来说,这些数据揭示了一个在神经嵴衍生的牙间质中起作用的新的蛋白质网络,它与发育和进化生物学的许多其他领域有关。