Kuroki Manabu
The Institute of Statistical Mathematics, 10-3, Midori-cho, Tachikawa, Tokyo, 190-8562, Japan.
Stat Med. 2013 Nov 10;32(25):4338-47. doi: 10.1002/sim.5873. Epub 2013 Jun 11.
This paper considers a problem of evaluating the causal effect of a treatment X on a true endpoint Y using a surrogate endpoint S, in the presence of unmeasured confounders between S and Y. Such confounders render the causal effect of X on Y unidentifiable from the causal effect of X on S and the joint probability of S and Y. To evaluate the causal effect of X on Y in such a situation, this paper derives closed-form formulas for the sharp bounds on the causal effect of X on Y based on both the causal effect of X on S and the joint probability of S and Y under various assumptions. In addition, we show that it is not always necessary to observe Y to test the null causal effect of X on Y under the monotonicity assumption between X and S. These bounds enable clinical practitioners and researchers to assess the causal effect of a treatment on a true endpoint using a surrogate endpoint with minimum computational effort.
在存在未测量的S与Y之间的混杂因素的情况下,使用替代终点S来评估治疗X对真实终点Y的因果效应。这些混杂因素使得无法从X对S的因果效应以及S和Y的联合概率中识别出X对Y的因果效应。为了评估在这种情况下X对Y的因果效应,本文基于X对S的因果效应以及在各种假设下S和Y的联合概率,推导出了X对Y的因果效应的精确界限的封闭形式公式。此外,我们表明,在X和S之间的单调性假设下,检验X对Y的零因果效应并不总是需要观察Y。这些界限使临床医生和研究人员能够以最小的计算量,使用替代终点来评估治疗对真实终点的因果效应。