Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium.
Center for Microbiology, VIB, Leuven-Heverlee, Flanders, Belgium.
Appl Environ Microbiol. 2022 Sep 22;88(18):e0081422. doi: 10.1128/aem.00814-22. Epub 2022 Sep 8.
The introduction in modern breweries of tall cylindroconical fermentors, replacing the traditional open fermentation vats, unexpectedly revealed strong inhibition of flavor production by the high CO pressure in the fermentors. We have screened our collection of Saccharomyces cerevisiae strains for strains displaying elevated tolerance to inhibition of flavor production by +0.65 bar CO, using a laboratory scale CO pressurized fermentation system. We focused on the production of isoamyl acetate, a highly desirable flavor compound conferring fruity banana flavor in beer and other alcoholic beverages, from its precursor isoamyl alcohol (IAAc/Alc ratio). We selected the most tolerant Saccharomyces cerevisiae strain, saké yeast Kyokai no. 1, isolated a stable haploid segregant seg63 with the same high IAAc/Alc ratio under CO pressure, crossed seg63 with the unrelated inferior strain ER7A and phenotyped 185 haploid segregants, of which 28 displaying a high IAAc/Alc ratio were pooled. Mapping of Quantitative Trait Loci (QTLs) by whole-genome sequence analysis based on SNP variant frequency revealed two QTLs. In the major QTL, reciprocal hemizygosity analysis identified as the causative mutant gene, a putative member of the TOR signaling pathway. The allele was dominant and contained a single causative point mutation, T2171C, resulting in the F274S substitution. Introduction of in an industrial tetraploid lager yeast with CRISPR/Cas9 enhanced isoamyl acetate production by 145% under CO pressure. This work shows the strong potential of polygenic analysis and targeted genetic modification for creation of cisgenic industrial brewer's yeast strains with specifically improved traits. The upscaling of fermentation to very tall cylindroconical tanks is known to negatively impact beer flavor. Most notably, the increased CO pressure in such tanks compromises production by the yeast of the desirable fruity "banana" flavor (isoamyl acetate). The cause of the CO inhibition of yeast flavor production has always remained enigmatic. Our work has brought the first insight into its molecular-genetic basis and provides a specific gene tool for yeast strain improvement. We first identified a yeast strain with superior tolerance to CO inhibition of flavor production, and applied polygenic analysis to identify the responsible gene. We narrowed down the causative element to a single nucleotide difference, , and showed that it can be engineered into brewing yeast to obtain strains with superior flavor production in high CO pressure conditions, apparently without affecting other traits relevant for beer brewing. Alternatively, such a strain could be obtained through marker-assisted breeding.
现代啤酒厂引入了高大的圆柱形发酵罐,取代了传统的开放式发酵罐,这意外地揭示了发酵罐中高 CO 压力对风味产生的强烈抑制作用。我们使用实验室规模的 CO 加压发酵系统,筛选了我们收集的酿酒酵母菌株,以寻找对 +0.65 bar CO 抑制风味产生具有更高耐受性的菌株。我们专注于从其前体异戊醇(IAAc/Alc 比)生产具有高度理想风味的乙酸异戊酯,该化合物在啤酒和其他酒精饮料中赋予水果香蕉风味。我们选择了最耐受的酿酒酵母菌株,清酒酵母 Kyokai no.1,从其分离出一个稳定的单倍体分离子 seg63,在 CO 压力下具有相同的高 IAAc/Alc 比,将 seg63 与不相关的劣质菌株 ER7A 杂交,并表型分析了 185 个单倍体分离子,其中 28 个具有高 IAAc/Alc 比的分离子被汇集在一起。基于 SNP 变体频率的全基因组序列分析进行的数量性状基因座(QTL)映射显示了两个 QTL。在主要 QTL 中,正反交半合子分析鉴定出 为致病突变基因,它是 TOR 信号通路的一个假定成员。等位基因是显性的,包含一个单一的致病点突变 T2171C,导致 F274S 取代。在具有 CRISPR/Cas9 的工业四倍体拉格酵母中引入 ,在 CO 压力下使乙酸异戊酯的产量提高了 145%。这项工作展示了多基因分析和靶向遗传修饰的强大潜力,可用于创造具有特定改进特性的转基因工业啤酒酵母菌株。众所周知,发酵放大到非常高大的圆柱形罐中会对啤酒风味产生负面影响。最值得注意的是,这种罐中增加的 CO 压力会影响酵母产生理想的水果“香蕉”风味(乙酸异戊酯)的能力。CO 抑制酵母风味产生的原因一直是个谜。我们的工作首次深入了解了其分子遗传学基础,并为酵母菌株改良提供了特定的基因工具。我们首先鉴定出一种对 CO 抑制风味产生具有更高耐受性的酵母菌株,并应用多基因分析来鉴定负责的基因。我们将致病因子缩小到一个单核苷酸差异 ,并表明可以将其工程改造到酿造酵母中,以在高 CO 压力条件下获得具有更高风味产生能力的菌株,显然不会影响啤酒酿造相关的其他特性。或者,可以通过标记辅助育种获得这样的菌株。