Suppr超能文献

疫苗组学、抗疫苗组学和免疫反应网络理论:21 世纪的个体化疫苗学。

Vaccinomics, adversomics, and the immune response network theory: individualized vaccinology in the 21st century.

机构信息

Mayo Clinic Vaccine Research Group, Rochester, MN 55905, USA.

出版信息

Semin Immunol. 2013 Apr;25(2):89-103. doi: 10.1016/j.smim.2013.04.007. Epub 2013 Jun 5.

Abstract

Vaccines, like drugs and medical procedures, are increasingly amenable to individualization or personalization, often based on novel data resulting from high throughput "omics" technologies. As a result of these technologies, 21st century vaccinology will increasingly see the abandonment of a "one size fits all" approach to vaccine dosing and delivery, as well as the abandonment of the empiric "isolate-inactivate-inject" paradigm for vaccine development. In this review, we discuss the immune response network theory and its application to the new field of vaccinomics and adversomics, and illustrate how vaccinomics can lead to new vaccine candidates, new understandings of how vaccines stimulate immune responses, new biomarkers for vaccine response, and facilitate the understanding of what genetic and other factors might be responsible for rare side effects due to vaccines. Perhaps most exciting will be the ability, at a systems biology level, to integrate increasingly complex high throughput data into descriptive and predictive equations for immune responses to vaccines. Herein, we discuss the above with a view toward the future of vaccinology.

摘要

疫苗与药物和医疗程序一样,越来越能够实现个体化或个性化,这通常基于高通量“组学”技术产生的新数据。由于这些技术,21 世纪的疫苗学将越来越多地放弃疫苗剂量和给药的“一刀切”方法,以及放弃疫苗开发的经验主义“分离-灭活-注射”范例。在这篇综述中,我们讨论了免疫反应网络理论及其在新的疫苗组学和抗药组学领域的应用,并举例说明了疫苗组学如何能够产生新的疫苗候选物,新的疫苗刺激免疫反应的方式,疫苗反应的新生物标志物,并有助于了解哪些遗传和其他因素可能导致疫苗罕见副作用。也许最令人兴奋的是,能够在系统生物学层面上,将越来越复杂的高通量数据整合到对疫苗免疫反应的描述性和预测性方程中。在此,我们讨论了上述内容,以期展望疫苗学的未来。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验