School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA.
Proc Biol Sci. 2013 Jun 12;280(1764):20131007. doi: 10.1098/rspb.2013.1007. Print 2013 Aug 7.
Body size affects nearly all aspects of organismal biology, so it is important to understand the constraints and dynamics of body size evolution. Despite empirical work on the macroevolution and macroecology of minimum and maximum size, there is little general quantitative theory on rates and limits of body size evolution. We present a general theory that integrates individual productivity, the lifestyle component of the slow-fast life-history continuum, and the allometric scaling of generation time to predict a clade's evolutionary rate and asymptotic maximum body size, and the shape of macroevolutionary trajectories during diversifying phases of size evolution. We evaluate this theory using data on the evolution of clade maximum body sizes in mammals during the Cenozoic. As predicted, clade evolutionary rates and asymptotic maximum sizes are larger in more productive clades (e.g. baleen whales), which represent the fast end of the slow-fast lifestyle continuum, and smaller in less productive clades (e.g. primates). The allometric scaling exponent for generation time fundamentally alters the shape of evolutionary trajectories, so allometric effects should be accounted for in models of phenotypic evolution and interpretations of macroevolutionary body size patterns. This work highlights the intimate interplay between the macroecological and macroevolutionary dynamics underlying the generation and maintenance of morphological diversity.
体型大小几乎影响生物体生物学的所有方面,因此了解体型进化的约束和动态非常重要。尽管在最小和最大体型的宏观进化和宏观生态学方面有实证研究,但关于体型进化速度和极限的一般定量理论却很少。我们提出了一个综合个体生产力、慢-快生活史连续体的生活方式组成部分以及世代时间的异速缩放的一般理论,以预测一个进化枝的进化速度和渐近最大体型,以及在体型进化多样化阶段的宏观进化轨迹的形状。我们使用新生代哺乳动物进化枝最大体型的数据来评估这个理论。正如所预测的那样,在生产力更高的进化枝(如须鲸)中,进化枝的进化速度和渐近最大体型更大,而在生产力较低的进化枝(如灵长类动物)中则更小。世代时间的异速缩放指数从根本上改变了进化轨迹的形状,因此在表型进化模型和宏观进化体型模式的解释中,应该考虑到异速效应。这项工作强调了形态多样性的产生和维持所基于的宏观生态学和宏观进化动态之间的密切相互作用。