Suppr超能文献

体重和生活方式如何影响胎盘哺乳动物的幼体生物量生产。

How body mass and lifestyle affect juvenile biomass production in placental mammals.

机构信息

School of Biological Sciences, University of Reading, , Reading, UK, Department of Biology, University of New Mexico, , Albuquerque, NM, USA, Santa Fe Institute, , Santa Fe, NM, USA.

出版信息

Proc Biol Sci. 2014 Jan 8;281(1777):20132818. doi: 10.1098/rspb.2013.2818. Print 2014 Feb 22.

Abstract

In mammals, the mass-specific rate of biomass production during gestation and lactation, here called maternal productivity, has been shown to vary with body size and lifestyle. Metabolic theory predicts that post-weaning growth of offspring, here termed juvenile productivity, should be higher than maternal productivity, and juveniles of smaller species should be more productive than those of larger species. Furthermore because juveniles generally have similar lifestyles to their mothers, across species juvenile and maternal productivities should be correlated. We evaluated these predictions with data from 270 species of placental mammals in 14 taxonomic/lifestyle groups. All three predictions were supported. Lagomorphs, perissodactyls and artiodactyls were very productive both as juveniles and as mothers as expected from the abundance and reliability of their foods. Primates and bats were unproductive as juveniles and as mothers, as expected as an indirect consequence of their low predation risk and consequent low mortality. Our results point the way to a mechanistic explanation for the suite of correlated life-history traits that has been called the slow-fast continuum.

摘要

在哺乳动物中,妊娠和哺乳期的生物量产生的个体特异性速率,这里称为母性生产力,已经被证明与体型和生活方式有关。代谢理论预测,后代的离乳后生长,这里称为幼体生产力,应该高于母性生产力,而且体型较小的物种的幼体应该比体型较大的物种的幼体更具生产力。此外,由于幼体通常与它们的母亲具有相似的生活方式,因此跨物种的幼体和母性生产力应该是相关的。我们使用来自 14 个分类/生活方式组的 270 种胎盘哺乳动物的数据来评估这些预测。所有三个预测都得到了支持。正如预期的那样,由于它们的食物的丰富度和可靠性,兔形目动物、奇蹄目动物和偶蹄目动物在幼体和母体中都具有很高的生产力。灵长类动物和蝙蝠的幼体和母体都没有生产力,这是由于它们的捕食风险低,死亡率低的间接结果。我们的研究结果为被称为慢-快连续体的一系列相关的生活史特征提供了一种机制解释。

相似文献

1
How body mass and lifestyle affect juvenile biomass production in placental mammals.
Proc Biol Sci. 2014 Jan 8;281(1777):20132818. doi: 10.1098/rspb.2013.2818. Print 2014 Feb 22.
2
Effects of body size and lifestyle on evolution of mammal life histories.
Proc Natl Acad Sci U S A. 2007 Nov 6;104(45):17707-12. doi: 10.1073/pnas.0707725104. Epub 2007 Oct 12.
3
4
Effects of allometry, productivity and lifestyle on rates and limits of body size evolution.
Proc Biol Sci. 2013 Jun 12;280(1764):20131007. doi: 10.1098/rspb.2013.1007. Print 2013 Aug 7.
6
Causes and consequences of variation in offspring body mass: meta-analyses in birds and mammals.
Biol Rev Camb Philos Soc. 2018 Feb;93(1):1-27. doi: 10.1111/brv.12329. Epub 2017 Apr 9.
7
Empirical and theoretical constraints on the evolution of lactation.
J Dairy Sci. 1993 Oct;76(10):3213-33. doi: 10.3168/jds.S0022-0302(93)77659-6.
8
The relationship between body mass and field metabolic rate among individual birds and mammals.
J Anim Ecol. 2013 Sep;82(5):1009-20. doi: 10.1111/1365-2656.12086. Epub 2013 May 23.
9
Basal metabolic rate and maternal energetic investment durations in mammals.
BMC Evol Biol. 2014 Sep 14;14:194. doi: 10.1186/s12862-014-0194-z.
10
Female promiscuity and maternally dependent offspring growth rates in mammals.
Evolution. 2014 Apr;68(4):1207-15. doi: 10.1111/evo.12333. Epub 2014 Jan 30.

引用本文的文献

1
The evolution of infanticide by females in mammals.
Philos Trans R Soc Lond B Biol Sci. 2019 Sep 2;374(1780):20180075. doi: 10.1098/rstb.2018.0075. Epub 2019 Jul 15.
2
Ontogenetic and life history trait changes associated with convergent ecological specializations in extinct ungulate mammals.
Proc Natl Acad Sci U S A. 2017 Jan 31;114(5):1069-1074. doi: 10.1073/pnas.1614029114. Epub 2017 Jan 17.
3
Allometric scaling of the elevation of maternal energy intake during lactation.
Front Zool. 2016 Jul 13;13:32. doi: 10.1186/s12983-016-0164-y. eCollection 2016.
4
5
Locomotor play drives motor skill acquisition at the expense of growth: A life history trade-off.
Sci Adv. 2015 Aug 14;1(7):e1500451. doi: 10.1126/sciadv.1500451. eCollection 2015 Aug.
6
Fundamental insights into ontogenetic growth from theory and fish.
Proc Natl Acad Sci U S A. 2015 Nov 10;112(45):13934-9. doi: 10.1073/pnas.1518823112. Epub 2015 Oct 27.

本文引用的文献

1
ADAPTIVE FEATURES OF MAMMALIAN REPRODUCTION.
Evolution. 1977 Jun;31(2):370-386. doi: 10.1111/j.1558-5646.1977.tb01019.x.
2
LIFE HISTORY VARIATION IN PRIMATES.
Evolution. 1985 May;39(3):559-581. doi: 10.1111/j.1558-5646.1985.tb00395.x.
3
Relationships between body size and some life history parameters.
Oecologia. 1978 Jan;37(2):257-272. doi: 10.1007/BF00344996.
4
Energetics, lifestyle, and reproduction in birds.
Proc Natl Acad Sci U S A. 2012 Jul 3;109(27):10937-41. doi: 10.1073/pnas.1206512109. Epub 2012 May 21.
5
A general model for effects of temperature on ectotherm ontogenetic growth and development.
Proc Biol Sci. 2012 May 7;279(1734):1840-6. doi: 10.1098/rspb.2011.2000. Epub 2011 Nov 30.
7
A general model for ontogenetic growth under food restriction.
Proc Biol Sci. 2011 Oct 7;278(1720):2881-90. doi: 10.1098/rspb.2011.0047. Epub 2011 Feb 23.
8
Universal scaling of production rates across mammalian lineages.
Proc Biol Sci. 2011 Feb 22;278(1705):560-6. doi: 10.1098/rspb.2010.1056. Epub 2010 Aug 26.
10
Geographical variation in predictors of mammalian extinction risk: big is bad, but only in the tropics.
Ecol Lett. 2009 Jun;12(6):538-49. doi: 10.1111/j.1461-0248.2009.01307.x. Epub 2009 Apr 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验