Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh Edinburgh, UK.
Front Comput Neurosci. 2013 Jun 6;7:75. doi: 10.3389/fncom.2013.00075. eCollection 2013.
Short-term synaptic plasticity is highly diverse across brain area, cortical layer, cell type, and developmental stage. Since short-term plasticity (STP) strongly shapes neural dynamics, this diversity suggests a specific and essential role in neural information processing. Therefore, a correct characterization of short-term synaptic plasticity is an important step towards understanding and modeling neural systems. Phenomenological models have been developed, but they are usually fitted to experimental data using least-mean-square methods. We demonstrate that for typical synaptic dynamics such fitting may give unreliable results. As a solution, we introduce a Bayesian formulation, which yields the posterior distribution over the model parameters given the data. First, we show that common STP protocols yield broad distributions over some model parameters. Using our result we propose a experimental protocol to more accurately determine synaptic dynamics parameters. Next, we infer the model parameters using experimental data from three different neocortical excitatory connection types. This reveals connection-specific distributions, which we use to classify synaptic dynamics. Our approach to demarcate connection-specific synaptic dynamics is an important improvement on the state of the art and reveals novel features from existing data.
短期突触可塑性在脑区、皮层层、细胞类型和发育阶段上具有高度多样性。由于短期可塑性(STP)强烈影响神经动力学,这种多样性表明其在神经信息处理中具有特定且重要的作用。因此,正确描述短期突触可塑性是理解和建模神经系统的重要步骤。已经开发了现象学模型,但通常使用最小均方方法将其拟合到实验数据。我们证明,对于典型的突触动力学,这种拟合可能会产生不可靠的结果。作为解决方案,我们引入了贝叶斯公式,该公式根据数据给出模型参数的后验分布。首先,我们表明常见的 STP 方案会导致某些模型参数的分布很广。利用我们的结果,我们提出了一种实验方案,可以更准确地确定突触动力学参数。接下来,我们使用来自三种不同新皮层兴奋性连接类型的实验数据来推断模型参数。这揭示了特定于连接的分布,我们可以使用这些分布来对突触动力学进行分类。我们区分特定于连接的突触动力学的方法是对现有技术的重要改进,并从现有数据中揭示了新的特征。