Suppr超能文献

建模兴奋性尖峰传输的短期动力学。

Modeling the Short-Term Dynamics of Excitatory Spike Transmission.

机构信息

Department of Biomedical Engineering.

Department of Psychological Sciences, University of Connecticut, Storrs, CT 06268.

出版信息

J Neurosci. 2020 May 20;40(21):4185-4202. doi: 10.1523/JNEUROSCI.1482-19.2020. Epub 2020 Apr 17.

Abstract

Information transmission in neural networks is influenced by both short-term synaptic plasticity (STP) as well as nonsynaptic factors, such as after-hyperpolarization currents and changes in excitability. Although these effects have been widely characterized using intracellular recordings, how they interact is unclear. Here, we develop a statistical model of the short-term dynamics of spike transmission that aims to disentangle the contributions of synaptic and nonsynaptic effects based only on observed presynaptic and postsynaptic spiking. The model includes a dynamic functional connection with short-term plasticity as well as effects due to the recent history of postsynaptic spiking and slow changes in postsynaptic excitability. Using paired spike recordings, we find that the model accurately describes the short-term dynamics of spike transmission at a diverse set of identified and putative excitatory synapses, including a pair of connected neurons within thalamus in mouse, a thalamocortical connection in a female rabbit, and an auditory brainstem synapse in a female gerbil. We illustrate the utility of this modeling approach by showing how the spike transmission patterns captured by the model may be sufficient to account for stimulus-dependent differences in spike transmission in the auditory brainstem (endbulb of Held). Finally, we apply this model to large-scale multielectrode recordings to illustrate how such an approach has the potential to reveal cell type-specific differences in spike transmission Although STP parameters estimated from ongoing presynaptic and postsynaptic spiking are highly uncertain, our results are partially consistent with previous intracellular observations in these synapses. Although synaptic dynamics have been extensively studied and modeled using intracellular recordings of postsynaptic currents and potentials, inferring synaptic effects from extracellular spiking is challenging. Whether or not a synaptic current contributes to postsynaptic spiking depends not only on the amplitude of the current, but also on many other factors, including the activity of other, typically unobserved, synapses, the overall excitability of the postsynaptic neuron, and how recently the postsynaptic neuron has spiked. Here, we developed a model that, using only observations of presynaptic and postsynaptic spiking, aims to describe the dynamics of spike transmission by modeling both short-term synaptic plasticity (STP) and nonsynaptic effects. This approach may provide a novel description of fast, structured changes in spike transmission.

摘要

神经网络中的信息传递受到短期突触可塑性 (STP) 以及非突触因素的影响,例如后超极化电流和兴奋性的变化。尽管这些影响已广泛使用细胞内记录进行了描述,但它们如何相互作用尚不清楚。在这里,我们开发了一种尖峰传输短期动力学的统计模型,该模型旨在仅根据观察到的突触前和突触后尖峰来分离突触和非突触效应的贡献。该模型包括一个具有短期可塑性的动态功能连接,以及由于突触后尖峰的最近历史和突触后兴奋性的缓慢变化而产生的效应。使用配对尖峰记录,我们发现该模型可以准确描述在一组不同的已识别和潜在兴奋性突触处的尖峰传输的短期动力学,包括在小鼠丘脑内的一对连接神经元、雌性兔的丘脑皮质连接以及雌性沙鼠的听觉脑干突触。我们通过展示模型捕获的尖峰传输模式如何足以解释听觉脑干(终球)中刺激依赖性的尖峰传输差异,来说明这种建模方法的实用性。最后,我们将该模型应用于大规模多电极记录,以说明这种方法如何有可能揭示尖峰传输中的细胞类型特异性差异。尽管从正在进行的突触前和突触后尖峰中估计的 STP 参数高度不确定,但我们的结果与这些突触中的先前细胞内观察结果部分一致。尽管突触动力学已经使用细胞内记录的突触后电流和电位进行了广泛的研究和建模,但从细胞外尖峰推断突触效应具有挑战性。突触电流是否有助于突触后尖峰不仅取决于电流的幅度,还取决于许多其他因素,包括其他通常未观察到的突触的活动、突触后神经元的整体兴奋性以及突触后神经元最近的尖峰时间。在这里,我们开发了一种模型,该模型仅使用突触前和突触后尖峰的观察值,旨在通过建模短期突触可塑性 (STP) 和非突触效应来描述尖峰传输的动力学。这种方法可能为尖峰传输的快速、结构化变化提供新的描述。

相似文献

1
Modeling the Short-Term Dynamics of Excitatory Spike Transmission.建模兴奋性尖峰传输的短期动力学。
J Neurosci. 2020 May 20;40(21):4185-4202. doi: 10.1523/JNEUROSCI.1482-19.2020. Epub 2020 Apr 17.
3
Estimating short-term synaptic plasticity from pre- and postsynaptic spiking.从突触前和突触后放电估计短期突触可塑性。
PLoS Comput Biol. 2017 Sep 5;13(9):e1005738. doi: 10.1371/journal.pcbi.1005738. eCollection 2017 Sep.
5
Broadband coding with dynamic synapses.具有动态突触的宽带编码。
J Neurosci. 2009 Feb 18;29(7):2076-88. doi: 10.1523/JNEUROSCI.3702-08.2009.

引用本文的文献

6
Linear-nonlinear cascades capture synaptic dynamics.线性-非线性级联捕获突触动力学。
PLoS Comput Biol. 2021 Mar 15;17(3):e1008013. doi: 10.1371/journal.pcbi.1008013. eCollection 2021 Mar.
8
Identifiability of a Binomial Synapse.二项式突触的可识别性
Front Comput Neurosci. 2020 Sep 30;14:558477. doi: 10.3389/fncom.2020.558477. eCollection 2020.

本文引用的文献

4
Model-Based Inference of Synaptic Transmission.基于模型的突触传递推理
Front Synaptic Neurosci. 2019 Aug 20;11:21. doi: 10.3389/fnsyn.2019.00021. eCollection 2019.
6
Omitted Variable Bias in GLMs of Neural Spiking Activity.GLM 分析神经发放活动中的忽略变量偏差。
Neural Comput. 2018 Dec;30(12):3227-3258. doi: 10.1162/neco_a_01138. Epub 2018 Oct 12.
8
Data Driven Models of Short-Term Synaptic Plasticity.短期突触可塑性的数据驱动模型
Front Comput Neurosci. 2018 May 22;12:32. doi: 10.3389/fncom.2018.00032. eCollection 2018.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验