Suppr超能文献

通过大规模分析揭示复杂网络中稀疏模块的隐藏关系。

Revealing the hidden relationship by sparse modules in complex networks with a large-scale analysis.

机构信息

Department of Automation, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, China.

出版信息

PLoS One. 2013 Jun 10;8(6):e66020. doi: 10.1371/journal.pone.0066020. Print 2013.

Abstract

One of the remarkable features of networks is module that can provide useful insights into not only network organizations but also functional behaviors between their components. Comprehensive efforts have been devoted to investigating cohesive modules in the past decade. However, it is still not clear whether there are important structural characteristics of the nodes that do not belong to any cohesive module. In order to answer this question, we performed a large-scale analysis on 25 complex networks with different types and scales using our recently developed BTS (bintree seeking) algorithm, which is able to detect both cohesive and sparse modules in the network. Our results reveal that the sparse modules composed by the cohesively isolated nodes widely co-exist with the cohesive modules. Detailed analysis shows that both types of modules provide better characterization for the division of a network into functional units than merely cohesive modules, because the sparse modules possibly re-organize the nodes in the so-called cohesive modules, which lack obvious modular significance, into meaningful groups. Compared with cohesive modules, the sizes of sparse ones are generally smaller. Sparse modules are also found to have preferences in social and biological networks than others.

摘要

网络的一个显著特征是模块,它不仅可以提供有关网络组织的有用见解,还可以提供其组件之间的功能行为的见解。在过去的十年中,人们已经做出了全面的努力来研究凝聚模块。然而,仍然不清楚是否存在不属于任何凝聚模块的节点的重要结构特征。为了回答这个问题,我们使用我们最近开发的 BTS(二叉树搜索)算法对 25 个具有不同类型和规模的复杂网络进行了大规模分析,该算法能够检测网络中的凝聚和稀疏模块。我们的结果表明,由凝聚孤立节点组成的稀疏模块与凝聚模块广泛共存。详细的分析表明,这两种类型的模块比仅仅是凝聚模块能更好地描述网络的功能单元的划分,因为稀疏模块可能会将缺乏明显模块意义的所谓凝聚模块中的节点重新组织成有意义的组。与凝聚模块相比,稀疏模块的大小通常较小。还发现稀疏模块在社交和生物网络中比其他网络更受欢迎。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94f5/3677904/0652910be1a1/pone.0066020.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验