Suppr超能文献

一种高性能的基于云的蛋白质-配体对接预测算法。

A high performance cloud-based protein-ligand docking prediction algorithm.

机构信息

Department of Electrical Engineer, National Cheng Kung University, Institute of Computer and Communication Engineering, Tainan 70101, Taiwan.

出版信息

Biomed Res Int. 2013;2013:909717. doi: 10.1155/2013/909717. Epub 2013 May 14.

Abstract

The potential of predicting druggability for a particular disease by integrating biological and computer science technologies has witnessed success in recent years. Although the computer science technologies can be used to reduce the costs of the pharmaceutical research, the computation time of the structure-based protein-ligand docking prediction is still unsatisfied until now. Hence, in this paper, a novel docking prediction algorithm, named fast cloud-based protein-ligand docking prediction algorithm (FCPLDPA), is presented to accelerate the docking prediction algorithm. The proposed algorithm works by leveraging two high-performance operators: (1) the novel migration (information exchange) operator is designed specially for cloud-based environments to reduce the computation time; (2) the efficient operator is aimed at filtering out the worst search directions. Our simulation results illustrate that the proposed method outperforms the other docking algorithms compared in this paper in terms of both the computation time and the quality of the end result.

摘要

近年来,通过整合生物和计算机科学技术来预测特定疾病的可药性已经取得了成功。虽然计算机科学技术可以用于降低药物研究的成本,但基于结构的蛋白质-配体对接预测的计算时间仍然不令人满意。因此,在本文中,提出了一种新的对接预测算法,称为快速基于云的蛋白质-配体对接预测算法(FCPLDPA),以加速对接预测算法。所提出的算法通过利用两个高性能算子来工作:(1)为基于云的环境专门设计了新的迁移(信息交换)算子,以减少计算时间;(2)高效算子旨在过滤出最差的搜索方向。我们的仿真结果表明,在所比较的其他对接算法中,该方法在计算时间和最终结果的质量方面都表现出色。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8139/3666298/fe7fa83ade92/BMRI2013-909717.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验