Suppr超能文献

采用盐 LiFSI 提高纳米硅电极的性能:光电电子能谱研究。

Improved performances of nanosilicon electrodes using the salt LiFSI: a photoelectron spectroscopy study.

机构信息

IPREM/ECP (UMR 5254), University of Pau, Hélioparc, 2 av. Pierre Angot, 64053 Pau cedex 9, France.

出版信息

J Am Chem Soc. 2013 Jul 3;135(26):9829-42. doi: 10.1021/ja403082s. Epub 2013 Jun 25.

Abstract

Silicon is a very good candidate for the next generation of negative electrodes for Li-ion batteries, due to its high rechargeable capacity. An important issue for the implementation of silicon is the control of the chemical reactivity at the electrode/electrolyte interface upon cycling, especially when using nanometric silicon particles. In this work we observed improved performances of Li//Si cells by using the new salt lithium bis(fluorosulfonyl)imide (LiFSI) with respect to LiPF6. The interfacial chemistry upon long-term cycling was investigated by photoelectron spectroscopy (XPS or PES). A nondestructive depth resolved analysis was carried out by using both soft X-rays (100-800 eV) and hard X-rays (2000-7000 eV) from two different synchrotron facilities and in-house XPS (1486.6 eV). We show that LiFSI allows avoiding the fluorination process of the silicon particles surface upon long-term cycling, which is observed with the common salt LiPF6. As a result the composition in surface silicon phases is modified, and the favorable interactions between the binder and the active material surface are preserved. Moreover a reduction mechanism of the salt LiFSI at the surface of the electrode could be evidenced, and the reactivity of the salt toward reduction was investigated using ab initio calculations. The reduction products deposited at the surface of the electrode act as a passivation layer which prevents further reduction of the salt and preserves the electrochemical performances of the battery.

摘要

硅是下一代锂离子电池负极材料的极佳候选材料,因为它具有高的可再充电容量。对于硅的实施,一个重要的问题是控制在电极/电解质界面上的化学活性,特别是在使用纳米硅颗粒时。在这项工作中,我们通过使用新盐双(氟磺酰)亚胺锂(LiFSI)代替 LiPF6,观察到 Li//Si 电池性能得到了改善。通过光电离谱(XPS 或 PES)研究了长期循环过程中的界面化学。通过来自两个不同同步加速器设施和内部 XPS(1486.6 eV)的软 X 射线(100-800 eV)和硬 X 射线(2000-7000 eV)进行了非破坏性的深度分辨分析。我们表明,LiFSI 允许避免在长期循环过程中常见盐 LiPF6 观察到的硅颗粒表面的氟化过程。结果,表面硅相的组成得到了修饰,并且保持了粘结剂和活性材料表面之间的有利相互作用。此外,可以证明电极表面上的盐 LiFSI 的还原机制,并使用从头算计算研究了盐的还原反应性。沉积在电极表面上的还原产物充当钝化层,防止盐的进一步还原并保持电池的电化学性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验