Suppr超能文献

将弹性和形成氢键的聚合物交织成用于锂离子电池中高性能硅阳极的高韧性和应力松弛型粘合剂。

Interweaving Elastic and Hydrogen Bond-Forming Polymers into Highly Tough and Stress-Relaxable Binders for High-Performance Silicon Anode in Lithium-Ion Batteries.

作者信息

Jeong Daun, Yook Jinsol, Kwon Da-Sol, Shim Jimin, Lee Jong-Chan

机构信息

Energy Storage Research Center, Korea Institute of Science and Technology (KIST), 14 Gil 5 Hwarang-ro, Seongbuk-gu, Seoul, 02792, Republic of Korea.

School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.

出版信息

Adv Sci (Weinh). 2023 Nov;10(31):e2302027. doi: 10.1002/advs.202302027. Epub 2023 Sep 26.

Abstract

A central challenge in practically using high-capacity silicon (Si) as anode materials for lithium-ion batteries is alleviating significant volume change of Si during cycling. One key to resolving the failure issues of Si is exploiting carefully designed polymer binders exhibiting mechanical robustness to retain the structural integrity of Si electrodes, while concurrently displaying elasticity and toughness to effectively dissipate external stresses exerted by the volume changes of Si. Herein, a highly elastic and tough polymer binder is proposed by interweaving polyacrylic acid (PAA) with poly(urea-urethane) (PUU) elastomer for Si anodes. By systematically tuning molecular parameters, including molecular weights of hard/soft segments and structures of hard segment components, it is demonstrated that the mechanical properties of polymer binders, such as elasticity, toughness, and stress relaxation ability, strongly affect the cycling performance of Si electrodes. This study provides new insight into the rational design of polymer binders capable of accommodating the volume changes of Si, primarily by judicious modulation of the mechanical properties of polymer binders.

摘要

在实际将高容量硅(Si)用作锂离子电池的负极材料时,一个核心挑战是缓解硅在循环过程中的显著体积变化。解决硅失效问题的一个关键是开发精心设计的聚合物粘结剂,这种粘结剂具有机械强度,以保持硅电极的结构完整性,同时展现出弹性和韧性,以有效消散由硅体积变化施加的外部应力。在此,通过将聚丙烯酸(PAA)与聚(脲 - 聚氨酯)(PUU)弹性体交织,为硅负极提出了一种高弹性和韧性的聚合物粘结剂。通过系统地调整分子参数,包括硬/软链段的分子量和硬链段组分的结构,结果表明聚合物粘结剂的机械性能,如弹性、韧性和应力松弛能力,强烈影响硅电极的循环性能。本研究为合理设计能够适应硅体积变化的聚合物粘结剂提供了新的见解,主要是通过明智地调节聚合物粘结剂的机械性能来实现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdd3/10625081/0ed6247385a9/ADVS-10-2302027-g002.jpg

相似文献

4
An Elastic Cross-Linked Binder for Silicon Anodes in Lithium-Ion Batteries with a High Mass Loading.
ACS Appl Mater Interfaces. 2023 Feb 8;15(5):6594-6602. doi: 10.1021/acsami.2c16997. Epub 2023 Jan 27.
5
Highly Elastic Block Copolymer Binders for Silicon Anodes in Lithium-Ion Batteries.
ACS Appl Mater Interfaces. 2020 Aug 26;12(34):38132-38139. doi: 10.1021/acsami.0c10005. Epub 2020 Aug 17.
7
Multifunctional Cross-Linking Composite Binder Enables the Stable Performance of Si-Based Anodes for High-Energy-Density Lithium-Ion Batteries.
ACS Appl Mater Interfaces. 2024 Aug 7;16(31):41036-41047. doi: 10.1021/acsami.4c08710. Epub 2024 Jul 26.
8
In Situ-Formed Novel Elastic Network Binder for a Silicon Anode in Lithium-Ion Batteries.
ACS Appl Mater Interfaces. 2021 Oct 6;13(39):46518-46525. doi: 10.1021/acsami.1c09607. Epub 2021 Sep 23.
9
Dynamic hydrogen bond cross-linking binder with self-healing chemistry enables high-performance silicon anode in lithium-ion batteries.
J Colloid Interface Sci. 2024 Mar;657:893-902. doi: 10.1016/j.jcis.2023.12.057. Epub 2023 Dec 10.
10
Combining ReaxFF Simulations and Experiments to Evaluate the Structure-Property Characteristics of Polymeric Binders in Si-Based Li-Ion Batteries.
ACS Appl Mater Interfaces. 2021 Sep 8;13(35):41956-41967. doi: 10.1021/acsami.1c08484. Epub 2021 Aug 25.

引用本文的文献

1
Structural Design and Challenges of Micron-Scale Silicon-Based Lithium-ion Batteries.
Adv Sci (Weinh). 2025 Feb;12(6):e2407540. doi: 10.1002/advs.202407540. Epub 2025 Jan 9.
3
How to Make the Stress Relaxation Experiment for Polymers More Informative.
Polymers (Basel). 2023 Dec 2;15(23):4605. doi: 10.3390/polym15234605.

本文引用的文献

1
Guar Gel Binders for Silicon Nanoparticle Anodes: Relating Binder Rheology to Electrode Performance.
ACS Appl Mater Interfaces. 2021 Nov 3;13(43):51403-51413. doi: 10.1021/acsami.1c10776. Epub 2021 Oct 19.
2
Undervalued Roles of Binder in Modulating Solid Electrolyte Interphase Formation of Silicon-Based Anode Materials.
ACS Appl Mater Interfaces. 2021 Sep 29;13(38):45139-45148. doi: 10.1021/acsami.1c13971. Epub 2021 Sep 20.
3
Zn-Imidazole Coordination Crosslinks for Elastic Polymeric Binders in High-Capacity Silicon Electrodes.
Adv Sci (Weinh). 2021 Mar 2;8(9):2004290. doi: 10.1002/advs.202004290. eCollection 2021 May.
4
Promises and Challenges of Next-Generation "Beyond Li-ion" Batteries for Electric Vehicles and Grid Decarbonization.
Chem Rev. 2021 Feb 10;121(3):1623-1669. doi: 10.1021/acs.chemrev.0c00767. Epub 2020 Dec 24.
5
Preparation of an Amorphous Cross-Linked Binder for Silicon Anodes.
ChemSusChem. 2019 Nov 8;12(21):4838-4845. doi: 10.1002/cssc.201902079. Epub 2019 Oct 15.
7
Surface-Functionalized Silicon Nanoparticles as Anode Material for Lithium-Ion Battery.
ACS Appl Mater Interfaces. 2018 Dec 26;10(51):44924-44931. doi: 10.1021/acsami.8b17729. Epub 2018 Dec 11.
8
Silicon oxides: a promising family of anode materials for lithium-ion batteries.
Chem Soc Rev. 2019 Jan 2;48(1):285-309. doi: 10.1039/c8cs00441b.
9
A Dual-Crosslinking Design for Resilient Lithium-Ion Conductors.
Adv Mater. 2018 Oct;30(43):e1804142. doi: 10.1002/adma.201804142. Epub 2018 Sep 10.
10
30 Years of Lithium-Ion Batteries.
Adv Mater. 2018 Jun 14:e1800561. doi: 10.1002/adma.201800561.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验