Suppr超能文献

金黄色葡萄球菌对无氧条件的感知与适应

Sensing and Adapting to Anaerobic Conditions by Staphylococcus aureus.

作者信息

Hall Jeffrey W, Ji Yinduo

机构信息

Department of Veterinary and Biomedical Science, College of Veterinary Medicine, University of Minnesota, St. Paul, Minneapolis, Minnesota, USA.

出版信息

Adv Appl Microbiol. 2013;84:1-25. doi: 10.1016/B978-0-12-407673-0.00001-1.

Abstract

A highly adaptive commensal organism, Staphylococcus aureus, possesses an array of genes that allow the bacterium to survive and grow in a wide variety of niches. Several of these niches are known to be or become anaerobic during the course of an infection; additionally, biofilms that develop, commonly on implanted medical devices, become anaerobic. The metabolic capability of S. aureus provides the organism with the essential nutrients needed to continue to grow, divide, and thwart the host immune system in the presence or absence of oxygen. In order to utilize the ATP-producing pathways and maintain cellular health S. aureus has evolved a series of regulatory systems that regulate these ATP-producing pathways. In this review, we discuss the protein signaling systems that sense, indirectly and directly, anaerobic conditions, their sensory mechanisms and signals, and outline the genes that are altered due to the absence of oxygen and the subsequent response by the bacterial cell. The switch from aerobic to anaerobic growth in S. aureus is complex and highly regulated, with some metabolic pathways regulated by multiple regulatory systems to ensure maximal utilization of each pathway and substrate.

摘要

金黄色葡萄球菌是一种高度适应性的共生生物体,拥有一系列基因,使该细菌能够在各种各样的生态位中生存和生长。已知在感染过程中,其中一些生态位会处于或变为厌氧状态;此外,通常在植入式医疗设备上形成的生物膜也会变为厌氧状态。金黄色葡萄球菌的代谢能力为该生物体提供了在有氧或无氧环境下继续生长、分裂并抵御宿主免疫系统所需的必需营养物质。为了利用产生ATP的途径并维持细胞健康,金黄色葡萄球菌进化出了一系列调节这些产生ATP途径的调节系统。在这篇综述中,我们讨论了间接和直接感知厌氧条件的蛋白质信号系统、它们的传感机制和信号,并概述了由于缺氧而改变的基因以及细菌细胞随后的反应。金黄色葡萄球菌从需氧生长向厌氧生长的转变是复杂且受到高度调节的,一些代谢途径由多个调节系统调节,以确保每条途径和底物的最大利用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验