Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
Neuron. 2013 Jun 5;78(5):773-84. doi: 10.1016/j.neuron.2013.03.025.
Targeting genetically encoded tools for neural circuit dissection to relevant cellular populations is a major challenge in neurobiology. We developed an approach, targeted recombination in active populations (TRAP), to obtain genetic access to neurons that were activated by defined stimuli. This method utilizes mice in which the tamoxifen-dependent recombinase CreER(T2) is expressed in an activity-dependent manner from the loci of the immediate early genes Arc and Fos. Active cells that express CreER(T2) can only undergo recombination when tamoxifen is present, allowing genetic access to neurons that are active during a time window of less than 12 hr. We show that TRAP can provide selective access to neurons activated by specific somatosensory, visual, and auditory stimuli and by experience in a novel environment. When combined with tools for labeling, tracing, recording, and manipulating neurons, TRAP offers a powerful approach for understanding how the brain processes information and generates behavior.
针对神经回路解剖学中相关细胞群体的基因编码工具是神经生物学的主要挑战。我们开发了一种方法,即靶向活性群体中的重组(TRAP),以获得对通过定义刺激激活的神经元的遗传访问。该方法利用了这样的小鼠,其中他莫昔芬依赖性重组酶 CreER(T2) 以活性依赖的方式从即时早期基因 Arc 和 Fos 的基因座表达。只有在存在他莫昔芬时,表达 CreER(T2)的活性细胞才能进行重组,从而可以对在不到 12 小时的时间窗口内活跃的神经元进行遗传访问。我们表明,TRAP 可以选择性地访问通过特定感觉、视觉和听觉刺激以及新环境体验激活的神经元。当与用于标记、追踪、记录和操纵神经元的工具结合使用时,TRAP 提供了一种强大的方法来了解大脑如何处理信息和产生行为。