Department of Bioengineering, Stanford University, Stanford, California, USA.
Nat Protoc. 2010 Mar;5(3):439-56. doi: 10.1038/nprot.2009.226. Epub 2010 Feb 18.
Elucidation of the neural substrates underlying complex animal behaviors depends on precise activity control tools, as well as compatible readout methods. Recent developments in optogenetics have addressed this need, opening up new possibilities for systems neuroscience. Interrogation of even deep neural circuits can be conducted by directly probing the necessity and sufficiency of defined circuit elements with millisecond-scale, cell type-specific optical perturbations, coupled with suitable readouts such as electrophysiology, optical circuit dynamics measures and freely moving behavior in mammals. Here we collect in detail our strategies for delivering microbial opsin genes to deep mammalian brain structures in vivo, along with protocols for integrating the resulting optical control with compatible readouts (electrophysiological, optical and behavioral). The procedures described here, from initial virus preparation to systems-level functional readout, can be completed within 4-5 weeks. Together, these methods may help in providing circuit-level insight into the dynamics underlying complex mammalian behaviors in health and disease.
阐明复杂动物行为的神经基础依赖于精确的活动控制工具以及兼容的读出方法。光遗传学的最新进展满足了这一需求,为系统神经科学开辟了新的可能性。通过使用毫秒级、细胞类型特异性的光干扰,直接探测定义的电路元件的必要性和充分性,结合合适的读出方法,如电生理学、光电路动力学测量和哺乳动物的自由移动行为,甚至可以对深层神经网络回路进行探测。在这里,我们详细收集了将微生物视蛋白基因递送到哺乳动物深部脑结构的策略,以及将由此产生的光学控制与兼容的读出方法(电生理、光学和行为)整合的方案。这里描述的从最初的病毒制备到系统水平功能读出的过程,可以在 4-5 周内完成。这些方法可以帮助我们深入了解健康和疾病状态下复杂哺乳动物行为的潜在神经机制。