Suppr超能文献

浓缩微生物群落的组学迷雾。

Condensing the omics fog of microbial communities.

机构信息

Luxembourg Centre for Systems Biomedicine, 7 avenue des Hauts-Fourneaux, University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg.

出版信息

Trends Microbiol. 2013 Jul;21(7):325-33. doi: 10.1016/j.tim.2013.04.009. Epub 2013 Jun 10.

Abstract

Natural microbial communities are ubiquitous, complex, heterogeneous, and dynamic. Here, we argue that the future standard for their study will require systematic omic measurements of spatially and temporally resolved unique samples in line with a discovery-driven planning approach. Resulting datasets will allow the generation of solid hypotheses about causal relationships and, thereby, will facilitate the discovery of previously unknown traits of specific microbial community members. However, to achieve this, solid wet lab, bioinformatic and statistical methodologies are required to have the promises of the emerging field of Eco-Systems Biology come to fruition.

摘要

自然微生物群落无处不在、复杂多样、异质且动态变化。在此,我们认为,未来对其进行研究的标准将需要系统地对具有时空分辨率的独特样本进行组学测量,同时遵循以发现为导向的规划方法。由此产生的数据集将有助于生成关于因果关系的可靠假设,从而促进发现特定微生物群落成员以前未知的特征。然而,要实现这一目标,需要坚实的湿实验室、生物信息学和统计方法学,以使新兴的生态系统生物学领域的承诺成为现实。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验