Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts 02118;
Mol Cell Proteomics. 2013 Oct;12(10):2935-51. doi: 10.1074/mcp.M113.030643. Epub 2013 Jun 13.
One of the principal goals of glycoprotein research is to correlate glycan structure and function. Such correlation is necessary in order for one to understand the mechanisms whereby glycoprotein structure elaborates the functions of myriad proteins. The accurate comparison of glycoforms and quantification of glycosites are essential steps in this direction. Mass spectrometry has emerged as a powerful analytical technique in the field of glycoprotein characterization. Its sensitivity, high dynamic range, and mass accuracy provide both quantitative and sequence/structural information. As part of the 2012 ABRF Glycoprotein Research Group study, we explored the use of mass spectrometry and ancillary methodologies to characterize the glycoforms of two sources of human prostate specific antigen (PSA). PSA is used as a tumor marker for prostate cancer, with increasing blood levels used to distinguish between normal and cancer states. The glycans on PSA are believed to be biantennary N-linked, and it has been observed that prostate cancer tissues and cell lines contain more antennae than their benign counterparts. Thus, the ability to quantify differences in glycosylation associated with cancer has the potential to positively impact the use of PSA as a biomarker. We studied standard peptide-based proteomics/glycomics methodologies, including LC-MS/MS for peptide/glycopeptide sequencing and label-free approaches for differential quantification. We performed an interlaboratory study to determine the ability of different laboratories to correctly characterize the differences between glycoforms from two different sources using mass spectrometry methods. We used clustering analysis and ancillary statistical data treatment on the data sets submitted by participating laboratories to obtain a consensus of the glycoforms and abundances. The results demonstrate the relative strengths and weaknesses of top-down glycoproteomics, bottom-up glycoproteomics, and glycomics methods.
糖蛋白研究的主要目标之一是将聚糖结构与功能相关联。为了理解糖蛋白结构如何发挥众多蛋白质的功能,这种关联是必要的。准确比较糖型和定量糖基化位点是朝着这个方向迈出的重要步骤。质谱分析已成为糖蛋白特性分析领域的一种强大分析技术。其灵敏度、高动态范围和质量精度提供了定量和序列/结构信息。作为 2012 年 ABRF 糖蛋白研究小组研究的一部分,我们探讨了使用质谱分析和辅助方法来表征两种来源的人前列腺特异性抗原(PSA)的糖型。PSA 被用作前列腺癌的肿瘤标志物,其血液水平升高用于区分正常和癌症状态。PSA 上的聚糖被认为是双天线 N 连接的,并且已经观察到前列腺癌组织和细胞系比良性组织含有更多的天线。因此,定量与癌症相关的糖基化差异的能力有可能积极影响 PSA 作为生物标志物的使用。我们研究了基于标准肽的蛋白质组学/糖组学方法,包括用于肽/糖肽测序的 LC-MS/MS 和用于差异定量的无标记方法。我们进行了一项实验室间研究,以确定不同实验室使用质谱方法正确表征两种不同来源的糖型之间差异的能力。我们使用聚类分析和参与实验室提交的数据集中的辅助统计数据处理来获得糖型和丰度的共识。结果表明了自上而下的糖蛋白组学、自下而上的糖蛋白组学和糖组学方法的相对优势和劣势。