Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK. ARC Seibersdorf research GmbH, Department of Bioresources, A-2444 Seibersdorf, Austria. Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
Environ Microbiol Rep. 2009 Oct;1(5):424-33. doi: 10.1111/j.1758-2229.2009.00063.x. Epub 2009 Aug 19.
Methylotrophs play an essential role in the global carbon cycle due to their participation in methane oxidation and C1 metabolism. Despite this important biogeochemical role, marine and estuarine microorganisms that consume C1 compounds are poorly characterized. In this study, we investigated the diversity of active methylotrophs and methanotrophs in sediment from the Colne Estuary (Brightlingsea, UK). Aerobic surface sediment samples were examined for the presence of C1 -utilizing communities using DNA stable-isotope probing (DNA-SIP) with (13) C-labelled methane, methanol and monomethylamine. Active methylotrophic bacteria were confirmed after DNA-SIP and denaturing gradient gel electrophoresis analyses. Clone libraries of 16S rRNA gene amplicons revealed the presence of methylotrophic bacteria affiliated with Methylophaga spp. in methanol and monomethylamine incubations. The addition of marine ammonium mineral salts medium to the microcosms increased the rate of substrate metabolism in DNA-SIP incubations, although nutrient addition did not affect the active populations contributing (13) C-labelled DNA. The (13) CH4 SIP incubations indicated the predominant activity of type I methanotrophs and microarray hybridization of amplified particulate methane monooxygenase (pmoA) genes confirmed the role of type Ia methanotrophs in SIP incubations. Type II methanotrophs (i.e. Methylocystis and Methylosinus) were only detected in the original sediment and in the unlabelled DNA fractions, which indicated that type II methanotrophs were not actively involved in C1 compound assimilation in DNA-SIP incubations with estuarine surface sediment samples.
甲基营养菌在全球碳循环中发挥着重要作用,因为它们参与了甲烷氧化和 C1 代谢。尽管具有这种重要的生物地球化学作用,但海洋和河口微生物消耗 C1 化合物的特性却知之甚少。在这项研究中,我们调查了科尔尼河口(英国布赖特灵西)沉积物中活性甲基营养菌和甲烷营养菌的多样性。使用 (13) C 标记的甲烷、甲醇和单甲基胺的 DNA 稳定同位素探针 (DNA-SIP) 检查好氧表层沉积物样本中是否存在利用 C1 化合物的群落。在 DNA-SIP 和变性梯度凝胶电泳分析后,确认了活性甲基营养细菌的存在。16S rRNA 基因扩增子的克隆文库显示,在甲醇和单甲基胺孵育中存在与 Methylophaga spp. 相关的甲基营养细菌。向微宇宙中添加海洋铵盐矿物盐培养基增加了 DNA-SIP 孵育中底物代谢的速率,尽管营养物添加并不影响贡献 (13) C 标记 DNA 的活性种群。(13) CH4 SIP 孵育表明主要活性为 I 型甲烷营养菌,扩增的颗粒甲烷单加氧酶 (pmoA) 基因的微阵列杂交证实了 I 型甲烷营养菌在 SIP 孵育中的作用。仅在原始沉积物和未标记的 DNA 部分中检测到 II 型甲烷营养菌(即 Methylocystis 和 Methylosinus),这表明 II 型甲烷营养菌在与河口表层沉积物样本的 DNA-SIP 孵育中并未积极参与 C1 化合物同化。