Raymond Jack, Ricci-Tersenghi Federico
Dipartimento di Fisica, Università La Sapienza, Piazzale Aldo Moro 5, I-00185 Rome, Italy.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 May;87(5):052111. doi: 10.1103/PhysRevE.87.052111. Epub 2013 May 9.
We introduce a mean-field approximation based on the reconciliation of maximum entropy and linear response for correlations in the cluster variation method. Within a general formalism that includes previous mean-field methods, we derive formulas improving on, e.g., the Bethe approximation and the Sessak-Monasson result at high temperature. Applying the method to direct and inverse Ising problems, we find improvements over standard implementations.
我们基于簇变分法中关联的最大熵与线性响应的调和引入了一种平均场近似。在包含先前平均场方法的一般形式体系内,我们推导出了在高温下例如改进贝叶斯近似和塞萨克 - 莫纳松结果的公式。将该方法应用于直接和逆伊辛问题,我们发现相较于标准实现有改进。