Suppr超能文献

噪声如何促成间隔计时的时间尺度不变性。

How noise contributes to time-scale invariance of interval timing.

作者信息

Oprisan Sorinel A, Buhusi Catalin V

机构信息

Department of Physics and Astronomy, College of Charleston, 66 George Street, Charleston, South Caroline 29424, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2013 May;87(5):052717. doi: 10.1103/PhysRevE.87.052717. Epub 2013 May 29.

Abstract

Time perception in the suprasecond range is crucial for fundamental cognitive processes such as decision making, rate calculation, and planning. In the vast majority of species, behavioral manipulations, and neurophysiological manipulations, interval timing is scale invariant: the time-estimation errors are proportional to the estimated duration. The origin and mechanisms of this fundamental property are unknown. We discuss the computational properties of a circuit consisting of a large number of (input) neural oscillators projecting on a small number of (output) coincidence detector neurons, which allows time to be coded by the pattern of coincidental activation of its inputs. We show that time-scale invariance emerges from the neural noise, such as small fluctuations in the firing patterns of its input neurons and in the errors with which information is encoded and retrieved by its output neurons. In this architecture, time-scale invariance is resistant to manipulations as it depends neither on the details of the input population nor on the distribution probability of noise.

摘要

超秒范围内的时间感知对于诸如决策、速率计算和规划等基本认知过程至关重要。在绝大多数物种中,行为操纵和神经生理操纵表明,间隔计时是尺度不变的:时间估计误差与估计持续时间成正比。这一基本特性的起源和机制尚不清楚。我们讨论了一个由大量(输入)神经振荡器投射到少量(输出)重合检测神经元组成的电路的计算特性,该电路允许时间通过其输入的重合激活模式进行编码。我们表明,时间尺度不变性源于神经噪声,例如其输入神经元放电模式的小波动以及其输出神经元编码和检索信息时的误差。在这种架构中,时间尺度不变性对操纵具有抗性,因为它既不依赖于输入群体的细节,也不依赖于噪声的分布概率。

相似文献

1
How noise contributes to time-scale invariance of interval timing.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 May;87(5):052717. doi: 10.1103/PhysRevE.87.052717. Epub 2013 May 29.
2
What is all the noise about in interval timing?
Philos Trans R Soc Lond B Biol Sci. 2014 Jan 20;369(1637):20120459. doi: 10.1098/rstb.2012.0459. Print 2014 Mar 5.
3
Time-scale invariance as an emergent property in a perceptron with realistic, noisy neurons.
Behav Processes. 2013 May;95:60-70. doi: 10.1016/j.beproc.2013.02.015. Epub 2013 Mar 18.
4
Noise-induced synchronization in small world networks of phase oscillators.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Sep;86(3 Pt 2):036204. doi: 10.1103/PhysRevE.86.036204. Epub 2012 Sep 6.
5
Stabilizing synchrony by inhomogeneity.
Sci Rep. 2015 Sep 4;5:13854. doi: 10.1038/srep13854.
6
Phase resetting and its implications for interval timing with intruders.
Behav Processes. 2014 Jan;101:146-53. doi: 10.1016/j.beproc.2013.09.005. Epub 2013 Oct 7.
7
Slow noise in the period of a biological oscillator underlies gradual trends and abrupt transitions in phasic relationships in hybrid neural networks.
PLoS Comput Biol. 2014 May 15;10(5):e1003622. doi: 10.1371/journal.pcbi.1003622. eCollection 2014 May.
8
Predicting the responses of repetitively firing neurons to current noise.
PLoS Comput Biol. 2014 May 8;10(5):e1003612. doi: 10.1371/journal.pcbi.1003612. eCollection 2014 May.
9
A discrete model of neural ensembles.
Philos Trans A Math Phys Eng Sci. 2002 Mar 15;360(1792):559-73. doi: 10.1098/rsta.2001.0946.
10
Random perturbations of spiking activity in a pair of coupled neurons.
Theory Biosci. 2008 Jun;127(2):135-9. doi: 10.1007/s12064-008-0039-7. Epub 2008 May 1.

引用本文的文献

1
Resource Allocation in the Noise-Free Striatal Beat Frequency Model of Interval Timing.
Timing Time Percept. 2023;11(1-4):103-123. doi: 10.1163/22134468-bja10056. Epub 2022 Jul 21.
4
Is the scalar property of interval timing preserved after hippocampus lesions?
J Theor Biol. 2021 May 7;516:110605. doi: 10.1016/j.jtbi.2021.110605. Epub 2021 Jan 26.
5
A Population-Based Model of the Temporal Memory in the Hippocampus.
Front Neurosci. 2018 Aug 7;12:521. doi: 10.3389/fnins.2018.00521. eCollection 2018.
7
Biological and Cognitive Frameworks for a Mental Timeline.
Front Neurosci. 2018 Jun 11;12:377. doi: 10.3389/fnins.2018.00377. eCollection 2018.
8
Scalar timing in memory: A temporal map in the hippocampus.
J Theor Biol. 2018 Feb 7;438:133-142. doi: 10.1016/j.jtbi.2017.11.012. Epub 2017 Nov 16.
9
A generalized phase resetting method for phase-locked modes prediction.
PLoS One. 2017 Mar 21;12(3):e0174304. doi: 10.1371/journal.pone.0174304. eCollection 2017.
10
Cognitive Aging and Time Perception: Roles of Bayesian Optimization and Degeneracy.
Front Aging Neurosci. 2016 May 18;8:102. doi: 10.3389/fnagi.2016.00102. eCollection 2016.

本文引用的文献

1
Timing in simple conditioning and occasion setting: a neural network approach.
Behav Processes. 1999 Apr;45(1-3):33-57. doi: 10.1016/s0376-6357(99)00008-x.
2
Alteration of sensory-evoked metabolic and oscillatory activities in the olfactory bulb of GLAST-deficient mice.
Front Neural Circuits. 2012 Jan 25;6:1. doi: 10.3389/fncir.2012.00001. eCollection 2012.
3
4
Neural circuits underlying the generation of theta oscillations.
J Physiol Paris. 2012 May-Aug;106(3-4):81-92. doi: 10.1016/j.jphysparis.2011.09.007. Epub 2011 Sep 22.
6
Neuron dynamics in the presence of 1/f noise.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 May;83(5 Pt 1):051912. doi: 10.1103/PhysRevE.83.051912. Epub 2011 May 12.
7
A model of interval timing by neural integration.
J Neurosci. 2011 Jun 22;31(25):9238-53. doi: 10.1523/JNEUROSCI.3121-10.2011.
8
Noise as control parameter in networks of excitable media: Role of the network topology.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Sep;82(3 Pt 2):036104. doi: 10.1103/PhysRevE.82.036104. Epub 2010 Sep 8.
9
Cortical and thalamic innervation of direct and indirect pathway medium-sized spiny neurons in mouse striatum.
J Neurosci. 2010 Nov 3;30(44):14610-8. doi: 10.1523/JNEUROSCI.1623-10.2010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验