Laboratory of Environmental Engineering, Department of Process Engineering, Faculty of Engineering, Badji Mokhtar - Annaba University, P.O. Box 12, 23000 Annaba, Algeria.
Ultrason Sonochem. 2014 Jan;21(1):53-9. doi: 10.1016/j.ultsonch.2013.05.008. Epub 2013 May 29.
Formation of highly reactive species such as OH, H, HO2 and H2O2 due to transient collapse of cavitation bubbles is the primary mechanism of sonochemical reaction. The crucial parameters influencing the formation of radicals are the temperature and pressure achieved in the bubble during the strong collapse. Experimental determinations estimated a temperature of about 5000 K and pressure of several hundreds of MPa within the collapsing bubble. In this theoretical investigation, computer simulations of chemical reactions occurring in an O2-bubble oscillating in water irradiated by an ultrasonic wave have been performed for diverse combinations of various parameters such as ultrasound frequency (20-1000 kHz), acoustic amplitude (up to 0.3 MPa), static pressure (0.03-0.3 MPa) and liquid temperature (283-333 K). The aim of this series of computations is to correlate the production of OH radicals to the temperature and pressure achieved in the bubble during the strong collapse. The employed model combines the dynamic of bubble collapse in acoustical field with the chemical kinetics of single bubble. The results of the numerical simulations revealed that the main oxidant created in an O2 bubble is OH radical. The computer simulations clearly showed the existence of an optimum bubble temperature of about 5200±200 K and pressure of about 250±20 MPa. The predicted value of the bubble temperature for the production of OH radicals is in excellent agreement with that furnished by the experiments. The existence of an optimum bubble temperature and pressure in collapsing bubbles results from the competitions between the reactions of production and those of consumption of OH radicals at high temperatures.
由于空化泡的瞬态崩溃而形成的 OH、H、HO2 和 H2O2 等高活性物质是声化学反应的主要机制。影响自由基形成的关键参数是在强崩溃期间气泡中达到的温度和压力。实验测定估计在崩溃气泡内的温度约为 5000 K,压力约为几百 MPa。在这项理论研究中,对在水中振荡的 O2 气泡在超声波照射下发生的化学反应进行了计算机模拟,模拟考虑了各种参数的不同组合,例如超声频率(20-1000 kHz)、声幅(高达 0.3 MPa)、静压(0.03-0.3 MPa)和液体温度(283-333 K)。这一系列计算的目的是将 OH 自由基的产生与强崩溃期间气泡中达到的温度和压力相关联。所采用的模型将气泡在声场中的动力学与单个气泡的化学动力学相结合。数值模拟的结果表明,在 O2 气泡中产生的主要氧化剂是 OH 自由基。计算机模拟清楚地表明,在大约 5200±200 K 的最佳气泡温度和约 250±20 MPa 的最佳气泡压力下存在 OH 自由基。对于 OH 自由基生成而言,预测的气泡温度值与实验结果非常吻合。在崩溃气泡中存在最佳的气泡温度和压力是由于在高温下 OH 自由基的产生和消耗反应之间的竞争所致。