Suppr超能文献

SPARC 评分:用于膀胱癌根治性切除术患者的多因素预后预测模型。

The SPARC score: a multifactorial outcome prediction model for patients undergoing radical cystectomy for bladder cancer.

机构信息

Department of Urology, Mayo Clinic, Rochester, Minnesota.

出版信息

J Urol. 2013 Dec;190(6):2005-10. doi: 10.1016/j.juro.2013.06.022. Epub 2013 Jun 14.

Abstract

PURPOSE

While multiple independent clinicopathological variables are associated with the outcome of radical cystectomy for bladder cancer, limited prediction tools exist to facilitate individualized risk assessment. We developed the SPARC (Survival Prediction After Radical Cystectomy) score, a prediction model for bladder cancer specific survival after radical cystectomy.

MATERIALS AND METHODS

We evaluated 2,403 patients who underwent radical cystectomy without neoadjuvant therapy at our institution between 1980 and 2008 with pathological re-review of all specimens. Of these patients 1,776 with nonmetastatic urothelial carcinoma were identified for analysis. A multivariate model was developed using stepwise selection to determine variables associated with cancer specific survival. We created a scoring system based on the β coefficients of this model.

RESULTS

Median followup after radical cystectomy in patients alive at last followup was 10.5 years (IQR 7.3, 15.3), during which time 610 had died of bladder cancer. In addition to pathological tumor stage, nodal status, multifocality and lymphovascular invasion, the patient specific factors of Charlson comorbidity index, Eastern Cooperative Oncology Group (ECOG) performance status, current smoking, preoperative hydronephrosis and receipt of adjuvant chemotherapy were significantly associated with the risk of bladder cancer death. We used cumulative scores of these variables to stratify patients into risk groups with 95%, 80%, 60%, 38% and 23% 5-year cancer specific survival from the lowest to the highest risk group, respectively (p<0.0001). The concordance index of this model was 0.75.

CONCLUSIONS

We present a model to individualize the estimation of cancer specific survival after radical cystectomy. Pending external validation, these data may be used for patient counseling, specifically in regard to recommendations for adjuvant therapy and surveillance frequency, as well as for clinical trial development.

摘要

目的

尽管有多个独立的临床病理变量与膀胱癌根治性切除术的结果相关,但目前尚无有效的预测工具来进行个体化风险评估。我们开发了 SPARC(根治性膀胱切除术后生存预测)评分,这是一种预测膀胱癌根治性切除术后特定生存的模型。

材料与方法

我们评估了 1980 年至 2008 年在我们机构接受根治性膀胱切除术且未接受新辅助治疗的 2403 例患者,对所有标本进行了病理复查。在这些患者中,有 1776 例患有非转移性尿路上皮癌,用于分析。使用逐步选择法建立多变量模型,以确定与癌症特异性生存相关的变量。我们根据该模型的β系数创建了一个评分系统。

结果

在最后一次随访时仍存活的患者中,根治性膀胱切除术后的中位随访时间为 10.5 年(IQR 7.3,15.3),在此期间有 610 例死于膀胱癌。除了病理肿瘤分期、淋巴结状态、多灶性和脉管侵犯外,患者特有的因素如 Charlson 合并症指数、东部合作肿瘤组(ECOG)表现状态、当前吸烟、术前肾盂积水和接受辅助化疗与膀胱癌死亡风险显著相关。我们使用这些变量的累积评分将患者分层为风险组,从风险最低到最高的 5 年癌症特异性生存率分别为 95%、80%、60%、38%和 23%(p<0.0001)。该模型的一致性指数为 0.75。

结论

我们提出了一种模型,可以个体化评估根治性膀胱切除术后的癌症特异性生存。在等待外部验证的情况下,这些数据可用于患者咨询,特别是在辅助治疗和监测频率的建议方面,以及临床试验的开发。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验