Suppr超能文献

动力蛋白-3,unc-104 调控果蝇树突形态发生和突触发育。

The kinesin-3, unc-104 regulates dendrite morphogenesis and synaptic development in Drosophila.

机构信息

Junior Research Group Synaptic Plasticity, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany.

出版信息

Genetics. 2013 Sep;195(1):59-72. doi: 10.1534/genetics.113.151639. Epub 2013 Jun 14.

Abstract

Kinesin-based transport is important for synaptogenesis, neuroplasticity, and maintaining synaptic function. In an anatomical screen of neurodevelopmental mutants, we identified the exchange of a conserved residue (R561H) in the forkhead-associated domain of the kinesin-3 family member Unc-104/KIF1A as the genetic cause for defects in synaptic terminal- and dendrite morphogenesis. Previous structure-based analysis suggested that the corresponding residue in KIF1A might be involved in stabilizing the activated state of kinesin-3 dimers. Herein we provide the first in vivo evidence for the functional importance of R561. The R561H allele (unc-104(bris)) is not embryonic lethal, which allowed us to investigate consequences of disturbed Unc-104 function on postembryonic synapse development and larval behavior. We demonstrate that Unc-104 regulates the reliable apposition of active zones and postsynaptic densities, possibly by controlling site-specific delivery of its cargo. Next, we identified a role for Unc-104 in restraining neuromuscular junction growth and coordinating dendrite branch morphogenesis, suggesting that Unc-104 is also involved in dendritic transport. Mutations in KIF1A/unc-104 have been associated with hereditary spastic paraplegia and hereditary sensory and autonomic neuropathy type 2. However, we did not observe synapse retraction or dystonic posterior paralysis. Overall, our study demonstrates the specificity of defects caused by selective impairments of distinct molecular motors and highlights the critical importance of Unc-104 for the maturation of neuronal structures during embryonic development, larval synaptic terminal outgrowth, and dendrite morphogenesis.

摘要

基于驱动蛋白的运输对于突触发生、神经可塑性和维持突触功能很重要。在神经发育突变体的解剖筛选中,我们发现了驱动蛋白-3 家族成员 Unc-104/KIF1A 的叉头相关结构域中保守残基(R561H)的交换是突触末端和树突形态发生缺陷的遗传原因。之前的基于结构的分析表明,KIF1A 中的相应残基可能参与稳定驱动蛋白-3 二聚体的激活状态。本文提供了第一个关于 R561 功能重要性的体内证据。R561H 等位基因(unc-104(bris))不是胚胎致死的,这使我们能够研究干扰 Unc-104 功能对胚胎后突触发育和幼虫行为的影响。我们证明 Unc-104 通过控制其货物的特异性递送来调节活性区和突触后密度的可靠贴合。接下来,我们发现 Unc-104 在限制神经肌肉接头生长和协调树突分支形态发生方面发挥作用,这表明 Unc-104 也参与了树突运输。KIF1A/unc-104 的突变与遗传性痉挛性截瘫和遗传性感觉和自主神经病 2 型有关。然而,我们没有观察到突触回缩或扭曲性后瘫。总的来说,我们的研究表明,选择性地损伤不同的分子马达会导致特定的缺陷,并强调了 Unc-104 在胚胎发育过程中神经元结构的成熟、幼虫突触末端生长和树突形态发生中的关键重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc3f/3761313/3abdcc0af96c/59fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验