EA-4674, Interactions Moléculaires et Systèmes Membranaires, Aix-Marseille Université Marseille, France.
Front Physiol. 2013 Jun 10;4:120. doi: 10.3389/fphys.2013.00120. eCollection 2013.
Age-related alterations of membrane lipids in brain cell membranes together with high blood cholesterol are considered as major risk factors for Alzheimer's disease. Yet the molecular mechanisms by which these factors increase Alzheimer's risk are mostly unknown. In lipid raft domains of the plasma membrane, neurotoxic Alzheimer's beta-amyloid (Abeta) peptides interact with both cholesterol and ganglioside GM1. Recent data also suggested that cholesterol could stimulate the binding of Abeta to GM1 through conformational modulation of the ganglioside headgroup. Here we used a combination of physicochemical and molecular modeling approaches to decipher the mechanisms of cholesterol-assisted binding of Abeta to GM1. With the aim of decoupling the effect of cholesterol on GM1 from direct Abeta-cholesterol interactions, we designed a minimal peptide (Abeta5-16) containing the GM1-binding domain but lacking the amino acid residues involved in cholesterol recognition. Using the Langmuir technique, we showed that cholesterol (but not phosphatidylcholine or sphingomyelin) significantly accelerates the interaction of Abeta5-16 with GM1. Molecular dynamics simulations suggested that Abeta5-16 interacts with a cholesterol-stabilized dimer of GM1. The main structural effect of cholesterol is to establish a hydrogen-bond between its own OH group and the glycosidic-bond linking ceramide to the glycone part of GM1, thereby inducing a tilt in the glycolipid headgroup. This fine conformational tuning stabilizes the active conformation of the GM1 dimer whose headgroups, oriented in two opposite directions, form a chalice-shaped receptacle for Abeta. These data give new mechanistic insights into the stimulatory effect of cholesterol on Abeta/GM1 interactions. They also support the emerging concept that cholesterol is a universal modulator of protein-glycolipid interactions in the broader context of membrane recognition processes.
年龄相关的细胞膜脂质改变以及血液中胆固醇升高被认为是阿尔茨海默病的主要危险因素。然而,这些因素增加阿尔茨海默病风险的分子机制在很大程度上尚不清楚。在质膜的脂筏区域,神经毒性的阿尔茨海默病β-淀粉样蛋白 (Abeta) 肽与胆固醇和神经节苷脂 GM1 都相互作用。最近的数据还表明,胆固醇可以通过改变神经节苷脂头部基团的构象来刺激 Abeta 与 GM1 的结合。在这里,我们使用物理化学和分子建模方法的组合来破译胆固醇辅助 Abeta 与 GM1 结合的机制。为了将胆固醇对 GM1 的影响与 Abeta 与胆固醇的直接相互作用分离,我们设计了一个包含 GM1 结合结构域但缺乏参与胆固醇识别的氨基酸残基的最小肽 (Abeta5-16)。使用 Langmuir 技术,我们表明胆固醇(而不是磷脂酰胆碱或鞘磷脂)显著加速 Abeta5-16 与 GM1 的相互作用。分子动力学模拟表明 Abeta5-16 与胆固醇稳定的 GM1 二聚体相互作用。胆固醇的主要结构效应是在其自身的 OH 基团和连接神经酰胺与 GM1 糖基部分的糖苷键之间建立氢键,从而使糖脂头部基团倾斜。这种精细的构象调整稳定了 GM1 二聚体的活性构象,其头部基团定向在两个相反的方向,形成一个用于 Abeta 的圣杯形受体。这些数据为胆固醇对 Abeta/GM1 相互作用的刺激作用提供了新的机制见解。它们还支持胆固醇是更广泛的膜识别过程中蛋白质-糖脂相互作用的通用调节剂的新兴概念。