INSERM UMR_S 1072, Aix Marseille University, 13015 Marseille, France.
Neuroscience Center-HiLIFE, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland.
Int J Mol Sci. 2023 Jan 16;24(2):1760. doi: 10.3390/ijms24021760.
A broad range of data identify Ca-permeable amyloid pores as the most neurotoxic species of Alzheimer's β-amyloid peptide (Aβ). Following the failures of clinical trials targeting amyloid plaques by immunotherapy, a consensus is gradually emerging to change the paradigm, the strategy, and the target to cure Alzheimer's disease. In this context, the therapeutic peptide AmyP53 was designed to prevent amyloid pore formation driven by lipid raft microdomains of the plasma membrane. Here, we show that AmyP53 outcompetes Aβ binding to lipid rafts through a unique mode of interaction with gangliosides. Using a combination of cellular, physicochemical, and in silico approaches, we unraveled the mechanism of action of AmyP53 at the atomic, molecular, and cellular levels. Molecular dynamics simulations (MDS) indicated that AmyP53 rapidly adapts its conformation to gangliosides for an optimal interaction at the periphery of a lipid raft, where amyloid pore formation occurs. Hence, we define it as an adaptive peptide. Our results describe for the first time the kinetics of AmyP53 interaction with lipid raft gangliosides at the atomic level. Physicochemical studies and in silico simulations indicated that Aβ cannot interact with lipid rafts in presence of AmyP53. These data demonstrated that AmyP53 prevents amyloid pore formation and cellular Ca entry by competitive inhibition of Aβ binding to lipid raft gangliosides. The molecular details of AmyP53 action revealed an unprecedent mechanism of interaction with lipid rafts, offering innovative therapeutic opportunities for lipid raft and ganglioside-associated diseases, including Alzheimer's, Parkinson's, and related proteinopathies.
大量数据表明,钙渗透性淀粉样蛋白孔是阿尔茨海默病β-淀粉样肽(Aβ)中最具神经毒性的物质。在针对淀粉样斑块的免疫疗法临床试验失败后,人们逐渐达成共识,要改变治疗阿尔茨海默病的范式、策略和目标。在这种情况下,设计了治疗肽 AmyP53 以防止由质膜脂筏微域驱动的淀粉样蛋白孔形成。在这里,我们表明 AmyP53 通过与神经节苷脂的独特相互作用方式,与 Aβ 竞争与脂筏结合。我们使用细胞、物理化学和计算方法的组合,在原子、分子和细胞水平上阐明了 AmyP53 的作用机制。分子动力学模拟(MDS)表明,AmyP53 迅速适应神经节苷脂的构象,以在脂筏的外围进行最佳相互作用,而淀粉样蛋白孔的形成就发生在此处。因此,我们将其定义为适应性肽。我们的结果首次描述了 AmyP53 与脂筏神经节苷脂在原子水平上相互作用的动力学。物理化学研究和计算模拟表明,在 AmyP53 存在的情况下,Aβ 不能与脂筏相互作用。这些数据表明,AmyP53 通过竞争性抑制 Aβ 与脂筏神经节苷脂的结合,防止淀粉样蛋白孔形成和细胞内 Ca 进入。AmyP53 作用的分子细节揭示了与脂筏相互作用的前所未有的机制,为包括阿尔茨海默病、帕金森病和相关蛋白病在内的脂筏和神经节苷脂相关疾病提供了创新的治疗机会。