Suppr超能文献

使用 DCE-MRI 进行自动评估急性肾移植排斥反应的综合无创框架。

A comprehensive non-invasive framework for automated evaluation of acute renal transplant rejection using DCE-MRI.

机构信息

BioImaging Laboratory, Bioengineering Department, University of Louisville, Louisville, KY, USA; Electrical and Computer Engineering Department, University of Louisville, Louisville, KY, USA.

出版信息

NMR Biomed. 2013 Nov;26(11):1460-70. doi: 10.1002/nbm.2977. Epub 2013 Jun 18.

Abstract

The objective was to develop a novel and automated comprehensive framework for the non-invasive identification and classification of kidney non-rejection and acute rejection transplants using 2D dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). The proposed approach consists of four steps. First, kidney objects are segmented from the surrounding structures with a geometric deformable model. Second, a non-rigid registration approach is employed to account for any local kidney deformation. In the third step, the cortex of the kidney is extracted in order to determine dynamic agent delivery, since it is the cortex that is primarily affected by the perfusion deficits that underlie the pathophysiology of acute rejection. Finally, we use an analytical function-based model to fit the dynamic contrast agent kinetic curves in order to determine possible rejection candidates. Five features that map the data from the original data space to the feature space are chosen with a k-nearest-neighbor (KNN) classifier to distinguish between acute rejection and non-rejection transplants. Our study includes 50 transplant patients divided into two groups: 27 patients with stable kidney function and the remainder with impaired kidney function. All of the patients underwent DCE-MRI, while the patients in the impaired group also underwent ultrasound-guided fine needle biopsy. We extracted the kidney objects and the renal cortex from DCE-MRI for accurate medical evaluation with an accuracy of 0.97 ± 0.02 and 0.90 ± 0.03, respectively, using the Dice similarity metric. In a cohort of 50 participants, our framework classified all cases correctly (100%) as rejection or non-rejection transplant candidates, which is comparable to the gold standard of biopsy but without the associated deleterious side-effects. Both the 95% confidence interval (CI) statistic and the receiver operating characteristic (ROC) analysis document the ability to separate rejection and non-rejection groups. The average plateau (AP) signal magnitude and the gamma-variate model functional parameter α have the best individual discriminating characteristics.

摘要

目的是开发一种新颖的自动化综合框架,用于使用二维动态对比增强磁共振成像(DCE-MRI)对肾脏非排斥和急性排斥移植进行非侵入性识别和分类。该方法包括四个步骤。首先,使用几何变形模型从周围结构中分割肾脏对象。其次,采用非刚性配准方法来解释任何局部肾脏变形。在第三步中,提取肾脏的皮质以确定动态造影剂的传递,因为正是皮质受到急性排斥病理生理学基础下的灌注缺陷的主要影响。最后,我们使用基于分析函数的模型来拟合动态对比剂动力学曲线,以确定可能的排斥候选者。使用 k-最近邻(KNN)分类器选择五个映射原始数据空间到特征空间的数据特征,以区分急性排斥和非排斥移植。我们的研究包括 50 名移植患者,分为两组:27 名肾功能稳定的患者和其余肾功能受损的患者。所有患者均接受 DCE-MRI 检查,而受损组的患者还接受超声引导下的细针活检。我们使用 Dice 相似性度量分别从 DCE-MRI 中提取肾脏对象和肾皮质,以进行准确的医学评估,其准确度分别为 0.97 ± 0.02 和 0.90 ± 0.03。在 50 名参与者的队列中,我们的框架正确地将所有病例(100%)分类为排斥或非排斥移植候选者,这与活检的金标准相当,但没有相关的有害副作用。95%置信区间(CI)统计和接收者操作特征(ROC)分析都证明了分离排斥和非排斥组的能力。平均平台(AP)信号幅度和伽马变量模型功能参数α具有最佳的个体鉴别特征。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验