Suppr超能文献

基于动态对比增强 MRI 的急性肾移植排斥反应的早期检测。

Dynamic contrast-enhanced MRI-based early detection of acute renal transplant rejection.

出版信息

IEEE Trans Med Imaging. 2013 Oct;32(10):1910-27. doi: 10.1109/TMI.2013.2269139. Epub 2013 Jun 19.

Abstract

A novel framework for the classification of acute rejection versus nonrejection status of renal transplants from 2-D dynamic contrast-enhanced magnetic resonance imaging is proposed. The framework consists of four steps. First, kidney objects are segmented from adjacent structures with a level set deformable boundary guided by a stochastic speed function that accounts for a fourth-order Markov-Gibbs random field model of the kidney/background shape and appearance. Second, a Laplace-based nonrigid registration approach is used to account for local deformations caused by physiological effects. Namely, the target kidney object is deformed over closed, equispaced contours (iso-contours) to closely match the reference object. Next, the cortex is segmented as it is the functional kidney unit that is most affected by rejection. To characterize rejection, perfusion is estimated from contrast agent kinetics using empirical indexes, namely, the transient phase indexes (peak signal intensity, time-to-peak, and initial up-slope), and a steady-phase index defined as the average signal change during the slowly varying tissue phase of agent transit. We used a kn-nearest neighbor classifier to distinguish between acute rejection and nonrejection. Performance of our method was evaluated using the receiver operating characteristics (ROC). Experimental results in 50 subjects, using a combinatoric kn-classifier, correctly classified 92% of training subjects, 100% of the test subjects, and yielded an area under the ROC curve that approached the ideal value. Our proposed framework thus holds promise as a reliable noninvasive diagnostic tool.

摘要

提出了一种用于从二维动态对比增强磁共振成像中分类急性排斥与非排斥状态的新型框架。该框架由四个步骤组成。首先,使用基于拉普拉斯的非刚性配准方法来解释生理效应引起的局部变形。即,将目标肾脏对象变形为闭合的、等距的轮廓(等轮廓),以紧密匹配参考对象。接下来,分割皮层,因为它是受排斥影响最大的功能肾脏单位。为了描述排斥,从对比剂动力学使用经验指数(即瞬态指数(峰值信号强度、达峰时间和初始上升斜率)和定义为在对比剂转运的缓慢变化组织相期间的平均信号变化的稳定相指数)来估计灌注。我们使用 k 最近邻分类器来区分急性排斥和非排斥。使用接收器操作特性 (ROC) 评估了我们方法的性能。在 50 名受试者中进行的实验结果,使用组合 k 分类器,正确分类了 92%的训练受试者、100%的测试受试者,并且 ROC 曲线下的面积接近理想值。因此,我们提出的框架有望成为一种可靠的非侵入性诊断工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验